Как должна работать турбина
Перейти к содержимому

Как должна работать турбина

  • автор:

Как работает турбокомпрессор

Когда разговор заходит о гоночных или мощных спортивных автомобилях, обычно затрагивают тему турбокомпрессоров. Турбокомпрессоры также можно увидеть и на больших дизельных двигателях. Турбина может заметно увеличить мощность двигателя без значительного увеличения массы автомобиля. Благодаря этому несомненному преимуществу турбокомпрессоры стали настолько популярными!

Как работает турбокомпрессор

  1. Введение
  2. Турбокомпрессоры и двигатели
  3. Устройство турбокомпрессора
  4. Детали турбокомпрессора
  5. Использование двух турбокомпрессоров и других турбо деталей
  6. Узнать больше
  7. Читайте также » Все статьи про работу двигателя

В этой статье мы узнаем, каким образом турбокомпрессор увеличивает мощность двигателя в жестких условиях эксплуатации. Мы также узнаем о том, как регуляторы давления наддува, керамические лопатки турбины и шариковые подшипники улучшают работу турбокомпрессора. Турбокомпрессоры являются своего рода системой наддува. Они сжимают воздух, поступающий в двигатель (читайте статью «Как работает автомобильный двигатель» для описания движения воздуха в обычном двигателе). Преимущество сжатия воздуха состоит в том, что при этом можно впустить больше воздуха в цилиндр, и, соответственно, больше топлива. Таким образом, при каждом взрыве в цилиндрах высвобождается больше энергии. Двигатель с турбонаддувом является более мощным по сравнению с обычным двигателем. Благодаря этому существенно увеличивается удельная мощность двигателя (для получения более подробной информации, рекомендуем прочитать статью «Как работает лошадиная сила»).

Для увеличения мощности двигателя, турбокомпрессор использует выхлопные газы для вращения турбины, которая, в свою очередь, вращает нагнетатель воздуха. Турбина турбокомпрессора вращается со скоростью до 150.000 оборотов в минуту (об/мин) — это примерно в 30 раз быстрее, чем скорость вращения большинства автомобильных двигателей. В связи с тем, что выхлоп идет на турбокомпрессор, температура в турбине очень высокая.

Далее мы расскажем о том, как узнать, насколько увеличится мощность двигателя, если установить турбокомпрессор.

Система турбонаддува автомобиля Mitsubishi Lancer Evolution IX.

Турбокомпрессоры и двигатели

Одним из самых эффективных способов увеличения мощности двигателя является увеличение количества сгораемого воздуха и топлива. Для этого можно установить дополнительные цилиндры или увеличить их объем. В некоторых случаях невозможно осуществить эти модификации, поэтому установка турбокомпрессора может стать более простым и компактным способом увеличения мощности, особенно для подержанных автомобилей.

Турбокомпрессоры позволяют двигателю сжигать больше топлива и воздуха благодаря увеличению подачи смеси в цилиндры. Стандартное давление сжатия воздуха турбокомпрессором составляет 6-8 фунт/дюйм 2 (0,4 — 0,55 бар). Учитывая, что нормальное атмосферное давление составляет 14,7 фунт/дюйм 2 (1 бар), при помощи турбокомпрессора в двигатель поступает на 50% больше воздуха. Следовательно, можно рассчитывать на увеличение мощности двигателя на 50%. Однако, эта технология не идеальна, поэтому мощность увеличивается на 30 — 40%.

Одна причина недостаточной эффективности состоит в том, что энергия, которая вращает турбину, не является свободной. Турбина, установленная в потоке выхлопных газов, создает препятствие для выхода газов. Это означает, что во время такта выпуска двигатель должен преодолеть высокое противодавление. В связи с этим происходит расход энергии работающих цилиндров.

Расположение турбокомпрессора в автомобиле

Устройство турбокомпрессора

Турбокомпрессор крепится к выпускному коллектору двигателя при помощи болтового соединения. Выхлопы из цилиндра вращают турбину, которая работает как газотурбинный двигатель. Турбина при помощи вала соединяется с компрессором, который установлен между воздушным фильтром и впускным коллектором. Компрессор сжимает воздух, поступающий в цилиндры.

Отработанные газы от цилиндра проходят через лопатки турбины, вызывая ее вращение. Чем больше выхлопных газов проходит через лопатки, тем быстрее происходит вращение.

С другой стороны вала, который установлен на турбине, компрессор вводит воздух в цилиндры. Компрессор представляет собой своего рода центробежный насос — он втягивает воздух в центр лопаток и выпускает его под давлением во время вращения.

Для того, чтобы выдержать скорость вращения до 150.000 об/мин, вал турбины должен иметь надежную опору. Большинство подшипников не выдержит такую скорость и взорвется гидростатические подшипники. Такой тип подшипников поддерживает вал на тонком слое масла, которое непрерывно подается. Это обусловлено двумя причинами: Масло охлаждает вал и некоторые другие детали турбокомпрессора и позволяет валу вращаться, снижая трения.

Существует много различных решений, связанных с конструкцией турбокомпрессоров для автомобильных двигателей. На следующей странице мы расскажем о некоторых оптимальных вариантах и рассмотрим, как они влияют на работу двигателя.

Когда воздух под давлением запускается в цилиндры при помощи турбокомпрессора и затем сжимается поршнями (читайте статью «Как работает автомобильный двигатель» для наглядного описания), существует риск самовозгорания смеси. Возгорание может произойти при сжатии воздуха, т.к. при этом возрастает температура. При высокой температуре может произойти возгорание еще до срабатывания свечи зажигания. Для предотвращения раннего сгорания топлива, автомобили с турбокомпрессором рекомендуется заправлять высокооктановым бензином. Если давление наддува слишком высокое, возможно придется уменьшить степень сжатия двигателя для того, чтобы избежать раннего сгорания топлива.

Как устанавливается турбокомпрессор

Как турбокомпрессор выглядит изнутри

Детали турбокомпрессора

Одна из основных проблем турбокомпрессоров состоит в том, что они не обеспечивают мгновенный форсированный наддув по нажатию на педаль газа. Турбине требуется несколько секунд для того, чтобы набрать скорость вращения, необходимую для наддува. В результате возникает задержка между временем нажатия на педаль газа и временем начала ускорения автомобиля при срабатывании турбины.

Одним из способов устранения задержки является снижение инерции вращающихся деталей, благодаря снижению их массы. Это способствует более быстрому набору скорости вращения турбины и компрессора и раннему началу наддува. Одним из наиболее надежных способов снижения инерции турбины и компрессора является уменьшение их размеров. Небольшой турбокомпрессор быстрее начнет наддув при низкой скорости работы двигателя, однако он не сможет обеспечить достаточный наддув при больших скоростях двигателя, когда в цилиндры поступает значительные объемы воздуха. Также существует риск слишком быстрого вращения на высоких скоростях двигателя, т.к. при этом через турбину проходит значительный объем выхлопа.

Большой турбокомпрессор может обеспечить сильный наддув при высокой скорости вращения двигателя, однако при этом может наблюдаться сильная задержка наддува, т.к. необходимо определенное время на разгон тяжелой турбины и компрессора. К счастью, существует ряд решений данных проблем.

В большинстве автомобильных турбокомпрессоров используется регулятор давления наддува, который позволяет уменьшить время задержки наддува небольших турбокомпрессоров, предотвращая слишком быстрое вращение при высокой скорости вращения двигателя. Регулятор давления наддува представляет собой клапан, который обеспечивает выпуск выхлопа в обход лопаток турбины. Регулятор давления наддува измеряет давление наддува. Если давление слишком высокое, это означает, что турбина вращается слишком быстро, поэтому регулятор давления наддува выпускает определенное количество выхлопа в обход лопаток для снижения скорости вращения турбины.

В некоторых турбокомпрессорах используются шариковые подшипники вместо гидростатических подшипников для поддержки вала. Но это не обычные шариковые подшипники – это особые подшипники, изготовленные из специального материала, которые могут выдержать скорости и температуры турбокомпрессора. Они снижают трение вала турбины при вращении, как и гидростатические подшипники. Они также позволяют использовать меньший и облегченный вал. Благодаря этому происходит быстрый набор скорости турбокомпрессором, что, в свою очередь, снижает задержку.

Керамические лопатки турбины легче стальных лопаток, которые используются в большинстве турбокомпрессоров. Благодаря этому опять же происходит быстрый набор скорости турбокомпрессором, что снижает задержку.

Турбокомпрессор обеспечивает наддув при большой скорости вращения двигателя.

Использование двух турбокомпрессоров и других турбо деталей

На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.

Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.

Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.

Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм 2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм 2 (0,5 бар), который является более плотним и содержит больше молекул, чет теплый воздух.

Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.

В старых автомобилях с карбюраторами автоматически увеличивается подачу топлива в соответствии с увеличением подачи воздуха. В современных автомобилях происходит то же самое. Система впрыска топлива ориентируется на данные датчика кислорода в выхлопе для определения необходимого соотношения топлива и воздуха, так что система автоматически увеличивает подачу топлива при установленном турбокомпрессоре.

При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива — либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.

Для получения большей информации по турбокомпрессорам, рекомендуем ознакомиться со ссылками на следующей странице.

Mazda RX-8 купе-кабриолет с установленной системой турбонаддува

Как работают турбины

Когда говорят о гоночных или спортивных машинах, часто всплывает тема турбонаддува. Турбины неизменно сопровождают современные дизеля. Турбина может существенно увеличить мощность двигателя без значительного роста его веса. Это большое преимущество привело к популярности турбин!

Давайте разберемся, как турбина увеличивает мощность, выживая при этом в экстремальных условиях работы. Мы познакомимся с вестгейтами, керамическими лопастями турбин и подшипниками, которые помогают турбинам делать работу еще лучше. Турбины – системы принудительного нагнетания воздуха. Они сжимают воздух. Сжатый воздух дает преимущество по мощности: в двигатель поступает больше воздуха, а это значит, что больше топлива может быть добавлено. Следовательно, каждое сгорание смеси в цилиндре дает больше мощности. Турбированный двигатель в общем случае всегда мощнее аналогичного по объему атмосферного. Двигатель меньшей массы может выдавать больше мощности при наличии наддува.

Чтобы создать давление воздуха, турбина использует поток выхлопных газов из двигателя для раскручивания своей крыльчатки, которая в свою очередь раскручивает воздушный насос. Турбина вращается с частотой до 150,000 об/мин – это в 30 раз быстрее среднего двигателя. Так как турбина работает с выхлопными газами, ей приходится выдерживать большие термические нагрузки.
Чтобы снять больше мощности с двигателя, необходимо увеличить количество топливно-воздушной смеси, которая сгорает в цилиндрах. Один из способов – добавить количество цилиндров или увеличить их объем. Часто эти изменения очень дороги. Турбина дешевле добавляет мощность, и именно поэтому она так популярна на вторичном рынке.

Расположение турбины в машине

Турбина позволяет сгорать большему количеству топлива, увеличивая количество топлива и воздуха в цилиндрах. Типичная прибавка к давлению от турбины – 0.3 – 0.5 бар. Поскольку атмосферное давление на уровне моря 1 бар, легко подсчитать, что в камеры сгорания попадает на 50 % больше воздуха, следовательно увеличение мощности должно доходить до 50%. В действительности, эффект получается 30- 40 %.

Одна из причин этой неэффективности – сила, раскручивающая турбину, не приходит извне. Наличие турбины увеличивает сопротивление выхлопа. Это означает, что на отводе отработавших газов двигатель вынужден преодолевать возросшее обратное сопротивление, что уменьшает отдачу с цилиндров, в которых в этот момент происходит сгорание.

Турбина и ее внешние компоненты

Турбина крепится на выхлопном коллекторе двигателя. Выхлопные газы двигателя раскручивают турбину. Турбина покоится на одном валу с компрессором, который располагается между воздушным фильтром и впускным коллектором. Компрессор накачивает воздух в цилиндры.

Внутри турбины

Выхлопной газ из цилиндров проходит через лопатки крыльчатки турбины, вызывая ее вращение. Чем больше выхлопных газов проходит, тем быстрее крутится турбина.

С другой стороны вала турбины устанавливают компрессор центробежного типа – он засасывает воздух в центре крыльчатки и разбрасывает его от центра из-за вращающегося вала.

Слишком много давления?
Воздух закачивается в цилиндры под давление и дальше сжимается поршнями. В этом кроится опасность – детонация. Детонация происходит из-за резкого увеличения температуры воздуха, при котором топливная смесь сгорает до воспламенения свечи. Поэтому турбированные машины обычно ездят на высокооктановом топливе, чтобы не доводить дело до детонации. Если давление наддува очень высоко, компрессию двигателя можно снизать, чтобы не переходить в детонацию.

Чтобы работать на скоростях до 150,000 об/мин, вал турбины требует серьезной защиты. Большинство подшипников взрываются при таких скоростях, поэтому турбины часто используют жидкие подшипники. Этот тип подшипников создает вокруг вала постоянный тонкий слой масла, которое постоянно накачивается насосом. Это служит двум целям: охлаждение и снижение трения.
В следующей главе рассмотрим компромиссы, на которые вынуждены идти инженеры при проектировании турбонаддува..

Что такое турбонаддув

Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.

, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, , температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

Турбонаддув японских автомобилей. Как работает турбина?

Неважно, какая надпись нанесена на ваш автомобиль: «TURBO» или «TWIN TURBO», речь в том и другом случае идет о турбонаддуве. В этой статье речь пойдёт о том, что же такое турбонаддув, как с ним обращаться, чтобы он как можно дольше не доставлял хлопот, и что можно сделать, если эти хлопоты возникнут.

Принципиальных различий в устройстве турбонаддува (далее по тексту — т/н) нет, есть различия в размерах, конструкции некоторых узлов, исполнении т/н. Рассмотрим его работу и устройство на примере одного из самых массовых, хотя и не самого надежного т/н Toyota СТ-20.

Термин «турбина», часто применяемый для обозначения т/н, не совсем соответствует истине, так как турбина является всего лишь одной из составных частей т/н. Т/н состоит из корпуса, вала с крыльчатками, двух опорных и одного упорного подшипников скольжения, системы уплотнений, двух улиток, в которых вращаются крыльчатки. На всю эту конструкцию навешен пневмопривод, приводящий в действие байпасный (перепускной) клапан (на некоторых моделях он отсутствует). Назначение байпасного клапана — регулировать обороты турбины и, соответственно, производительность компрессора. Когда давление воздуха на выходе из компрессора начинает превышать оптимальное, срабатывает пневмопривод, открывающий клапан. В результате часть выхлопных газов напрямую выходит в выхлопную систему, и обороты турбины снижаются. Сама турбина — это крыльчатка, неразъемно насаженная на вал и приводящая во вращение другую крыльчатку — компрессор. Турбина изготовлена из жаростойкого сплава, компрессор — алюминиевый, вал — обычная среднелегированная сталь. Отремонтировать эти детали невозможно, их можно только заменить. Исключение составляет изношенный вал, который иногда можно перешлифовать и под получившийся размер изготовить новые подшипники.

Корпус т/н представляет собой сплошную отливку из чугуна, в которой на подшипниках вращается вал. Изнашиваются обычно постель под подшипники и гнездо под уплотнительное кольцо. Исправить можно расточкой под новый размер. Улитка турбины — чугунная деталь сложной формы. Именно она формирует газовый поток, вращающий турбину. Улитка компрессора представляет собой алюминиевую отливку с механически обработанным местом под компрессор. Вращающийся компрессор засасывает воздух через центральное отверстие, сжимает его и по кольцевому каналу подает в двигатель.
На первый взгляд, конструкция проста. Но высокая точность изготовления всех без исключения деталей, сложные поверхности, точное литье могут создать много проблем даже в условиях хорошо оборудованной мастерской. Тем более что далеко не каждый конкретный т/н можно отремонтировать, порой проще собрать из имеющихся деталей другой.

Рис.1. Турбокомпрессор в разрезе

1 — улитка компрессора;
2 — корпус;
3 — стопорные кольца;
4 — стяжной хомут;
5 — улитка турбины;
6 — уплотнительное кольцо со стороны турбины (аналогичное есть со стороны компрессора, на рис. его не видно);
7 — колесо турбины;
8 — промежуточные втулки подшипников скольжения;
9 — упорный подшипник скольжения;
10 — колесо компрессора;
11 — гайка.

Как же все это работает? Говорят: «Турбина включилась, и я попер. » Это в корне неправильно, так как т/н начинает свою работу с первыми оборотами двигателя и заканчивает ее уже после того, как двигатель остановился. При первых вспышках в цилиндрах двигателя выхлопные газы из коллектора сразу же попадают в улитку турбины и начинают вращать вал с крыльчатками. Пока обороты двигателя невелики, давление и скорость выхлопных газов недостаточны, поэтому компрессор вращается на холостом ходу, не создавая излишнего сопротивления на всасывании, просто перемешивает воздух. Нажимаем на педаль газа. Обороты двигателя растут, на панели загорается зеленая лампочка «TURBO» (если она есть), и вы чувствуете ощутимый толчок в спину. Помните: «Турбина включилась. » Она просто вышла на свои рабочие обороты, кстати, очень высокие: 110-115 тысяч об/ мин. Теперь компрессор не просто месит воздух, а эффективно сжимает его и посылает в двигатель. При этом срабатывает соответствующая сервисная система в карбюраторе (ТНВД ли, EFI, неважно), двигатель получает в цилиндры больший весовой заряд топливной смеси, резко (на 50-70 %) возрастает его мощность и, соответственно, расход топлива.

Турбонаддуву приходится работать в далеко не легких условиях: высокая температура, высокие окружные скорости (скорость на концах лопаток, в зависимости от модели т/н, примерно такая же, как у пистолетной пули — около 300 м/сек). Скорости вращения подшипников также близки к предельно допустимым, чтобы снизить их, приходится идти на различные ухищрения. Что же позволяет работать т/н в таких условиях долго и надежно?

Как только вы завели двигатель, начинает работать масляный насос. Масло по системе каналов под давлением поступает на подшипники т/н, и вал начинает вращаться на масляном клине. При этом свою порцию масла получает и упорный подшипник. Чем больше обороты двигателя, тем больше масла поступает на вал турбины и его подшипники. Эти подшипники изготовлены из специально подобранных материалов, для них выбраны оптимальные зазоры: при меньших зазорах возникает опасность подклинивания подшипников при тепловом расширении, при больших — опасность срыва масляного клина и работы в условиях полужидкостного трения, к тому же возникает перекос вала и идет интенсивный износ уплотнительного кольца. Поскольку зазоры в парах вал — подшипник, подшипник — корпус очень малы и соизмеримы с размерами ячеек масляного фильтра, то следует помнить о чистоте масла и состоянии масляного фильтра.

Долговечность подшипников скольжения, в отличие от подшипников качения, не зависит в такой мере от частоты вращения. Коэффициент трения у правильно рассчитанных и работающих в условиях жидкостной смазки подшипников скольжения равен 0,001-0,005. Однако, при неблагоприятных условиях работы (высокая вязкость масла, высокие окружные скорости, малые зазоры) коэффициент трения достигает 0,1-0,2, что приводит к снижению оборотов т/н, а следовательно, и снижению его эффективности и повышению нагарообразования из-за повышения теплоотвода. Подшипники скольжения надежно работают при температуре не более 150 градусов С. При более высоких температурах возникает опасность разрыва масляного слоя в результате разжижения масла. Кроме того, при высоких температурах обычные минеральные масла быстро окисляются и теряют свои смазочные свойства.

При полужидкостной смазке непрерывность масляного слоя нарушена, и поверхности вала и подшипника на участках большей или меньшей протяженности соприкасаются своими микронеровностями. При граничной системе смазки поверхности вала и подшипников соприкасаются полностью или на участках большой протяженности, разделительный масляный слой здесь вообще отсутствует.

Пока двигатель вращается, и масляный насос создает давление, исправный т/н работает нормально. Но рано или поздно вы заглушите двигатель, он остановится, остановится и масляный насос, давление масла в системе мгновенно упадет до нуля, а вал с крыльчатками, который имеет приличный вес и вращается с очень большой скоростью, мгновенно остановиться не сможет. Но масляного клина уже нет. Возникает полужидкостная смазка, переходящая в граничную. В тяжело нагруженных подшипниках возникает перегрев, расплавление, схватывание и заедание подшипника. Плюс грязное масло, и в результате идет интенсивный износ. А допустимый износ подшипников составляет 0,03-0,06 мм в зависимости от модели т/н. Выводы делайте сами.

Это одна из проблем, возникающих в ходе работы т/н. Для того, чтобы она не стала основной, во-первых, вовремя меняйте масло и масляный фильтр. Во-вторых, используйте только масло, предназначенное для двигателей, оборудованных турбонаддувом, которое несложно выбрать среди большого числа существующих хороших масел. Но в дороге всякое может случиться, и если вам пришлось залить неизвестное масло, то не гоните, двигайтесь потихоньку. Двигатель это масло переживет, а вот турбонаддув — не обязательно. Приехав домой, сразу же смените масло и масляный фильтр.

И, наконец, третье, самое главное условие нормальной работы т/н. Как мы уже отмечали, в жизни т/н есть два самых ответственных момента: запуск двигателя и его остановка. При запуске холодного двигателя масло в нем имеет высокую вязкость, оно с трудом прокачивается по зазорам; еще не установились тепловые зазоры; нагрев разных деталей т/н, а следовательно, и тепловое расширение, идут с разной скоростью. Поэтому не спешите, дайте двигателю и т/н прогреться. Если вам надо остановиться, никогда не глушите двигатель сразу. В зависимости от режима езды дайте ему поработать на холостом ходу 2-5 минут (зимой можно дольше). За это время вал турбины снизит обороты до минимальных, а детали, непосредственно соприкасающиеся с выхлопными газами, плавно остынут. В процессе работы крыльчатка турбины и вал сильно нагреваются. Масло, поступающее для смазки подшипников, нагнетается с большой интенсивностью и успевает снять нагрев с вала, не успев перегреться само. При резкой остановке двигателя прокачка масла прекращается, раскаленная крыльчатка турбины отдает большую часть тепла валу, и масляная пленка, покрывающая детали, разогревается до температуры горения. Идет интенсивное нагарообразование в районе уплотнительного кольца и несколько меньшее — в районе подшипников и на внутренних поверхностях корпуса т/н. Спасает только то, что масло, предназначенное для таких двигателей, изначально рассчитано на более высокие температуры, чем обычное. Но и оно имеет свои пределы. Владельцам автомобилей Nissan следует помнить, что в этих автомобилях т/н работают в более напряженном тепловом режиме, чем, например, у автомобилей Toyota. Значительно облегчает жизнь и продлевает срок службы т/н турботаймер. Он установлен не на всех автомобилях, но эта функция есть во многих охранных сигнализациях.

Приведем пример из практики. Отремонтированный турбонаддув, отработав 6000 км без всяких замечаний, вдруг резко заверещал. Дело было зимой, в морозы. Как рассказывал хозяин машины, он спешил, поэтому, выехав из Арсеньева во Владивосток (путь неблизкий), всю дорогу гнал, сколько можно, благо машина и дорога позволяли. Приехал домой, поставил машину на стоянку, сразу же заглушив двигатель. На улице мороз далеко за 20 градусов С. Утром завел — резкий, неприятный металлический вой турбонаддува. Оказалось, что от резкого перепада температур чугунная улитка турбины деформировалась, и крыльчатка стала ее задевать. Под увеличительным стеклом на подшипниках отчетливо просматривались следы станочной обработки, износ отсутствовал. После замены улитки т/н работал без замечаний.

Это был т/н фирмы Toyota СТ-20, двигатель 2LT. Аналогичные случаи были и на других т/н этой фирмы — СТ-9, СТ-12. Но может возникнуть ситуация еще хуже, когда от перепадов температур и старости возникает трещина в конце кольцевого канала улитки турбины. Распространяясь дальше, она может привести к разрыву окна байпасного клапана и, в результате, к полному выходу т/н из строя. Ремонт в этом случае невозможен. Подобные моменты делают ремонт т/н фирмы Toyota похожим на лотерею — кому как повезет: может проработать и 3 месяца, и 3 года. Поэтому лучше всего заменить т/н на новый, хотя это и значительно дороже.

Такая же беда часто случается с т/н Garret, изготовленными в Японии, крайне редко с т/н фирмы Mitsubishi, но никогда не встречалась нам на т/н Nissan Motors. Последние, несмотря на большие неудобства при снятии — постановке и разборке — сборке, поражают своей добротностью. Встречаются они и на тойотовском двигателе MTEU. но уже без надписи Nissan Motors. Заменить их можно турбонаддувом от двигателя VG-20.

Если у вашей машины пошел интенсивный белый дым из глушителя и упала мощность — т/н надо срочно сдавать в ремонт или менять на новый, потому что в нем изношены подшипники и уплотнительное кольцо около крыльчатки турбины. В результате масло под давлением устремляется в выхлопную трубу, где испаряется и вылетает наружу, создавая дымовую завесу. Расход масла может возрасти до 2-3 литров на 100 км пробега. Бывает и так, что дымовой завесы нет, но автомобиль не может развить мощность, лампочка «TURBO» не загорается, у дизельных двигателей появляется постоянный черный дым на оборотах — все это говорит о том, что скорее всего т/н тоже изношен, и к тому же основательно забит нагаром, поэтому компрессор из-за повышенного сопротивления вращению не развивает рабочих оборотов, а двигателю не хватает воздуха. Эта неисправность характерна в основном для т/н Nissan Motors и Garret.

Несколько слов о снятии и установке турбонаддува, хотя это в большей степени представляет интерес для специалистов. При демонтаже очень неудобно, а порой просто тяжело отсоединить т/н от выхлопного коллектора и приемной трубы глушителя. Поэтому многие автомеханики, стремясь сделать все как можно проще, допускают распространенную ошибку: они снимают стяжной хомут между улиткой турбины и корпусом, а затем с помощью молотка и зубила снимают т/н. В результате они деформируют посадочные плоскости и гнут вал турбины. Теперь эти железки можно только выбросить. Снимать турбонаддув надо целиком, только после этого можно отсоединять улитку турбины, так как эта операция сама по себе требует зачастую больших физических усилий.

При демонтаже надо внимательно и аккуратно обращаться с подающей трубкой масляной системы. Эта трубка имеет очень тонкие стенки, ее легко можно перегнуть, и т/н, сев на голодный масляный паек, работает после такого ремонта очень недолго. Порой хватает 15-20 мин, чтобы окончательно привести в негодность только что отремонтированный или новый агрегат.

При установке т/н сложностей обычно не возникает, хотя есть некоторые тонкости: перед установкой через сливное отверстие в т/н надо залить 30-50 граммов моторного масла (в зависимости от размеров) и пальцем (пальцем, а не отверткой) повращать вал. Затем масло можно слить, так как свою роль оно уже выполнило, масляная пленка на деталях теперь есть, а при установке т/н на место вы все равно разольете это масло или на себя, или на двигатель — по вашему усмотрению. Еще раз убедитесь в исправности масляной магистрали, проверьте, чтобы в т/н не попали посторонние предметы, наличие которых может привести к печальным последствиям, и установите турбонаддув на место.

Итак, т/н установлен, все подсоединено, можно заводить. Не спешите. Заведите двигатель, дайте ему прогреться до рабочей температуры, и лишь когда двигатель и т/н прогреются, начинайте постепенно увеличивать обороты. 1500 об/мин — на 5-10 секунд задержитесь и прислушайтесь к работе т/н. Сбросьте обороты секунд на 20-30. Увеличьте обороты до 2000 и проделайте все то же самое. И так далее, вплоть до красной зоны, Примерно на 2500-3000 об/мин должен появиться характерный звук работающего турбонаддува: легкий чистый свист (некоторые говорят «вой», кому как нравится). Особенно отчетливо этот звук слышен в течение нескольких секунд при резком сбросе оборотов.

Если в процессе запуска послышался металлический звук на каких-то оборотах и выше (звук характерный и отличный от звука, издаваемого исправным т/н), не насилуйте напрасно турбонаддув, он не притрется, а неприятности могут быть. Надо сразу заглушить двигатель, снять т/н, найти и устранить причину этого звука. Но прежде чем снимать, вспомните, что очень похожий звук издает ненатянутый ремень генератора. Поэтому если есть подозрения, что это он может быть источником подобного звука, смочите ремень водой. Звук исчез? Значит, причина действительно была в ремне, и его надо подтянуть. Остался? Значит, надо все-таки снимать турбонаддув и искать неисправность в нем.

После замены или ремонта турбонаддува желательно сразу же заменить масло и фильтр. А лучше это сделать еще перед демонтажем, чтобы новый т/н сразу работал на чистом масле.
Как видите, ничего сложного в эксплуатации турбонаддува нет, требуется лишь элементарная аккуратность: вовремя меняйте масло и масляный фильтр, используйте нужные сорта масла, не перегревайте т/н (к перегреву приводят неисправности в системе зажигания или впрыска, длительная езда на высоких оборотах). Следите за состоянием воздушного фильтра, забитый воздушный фильтр создает повышенное сопротивление на всасывании и производительность компрессора резко снижается. Порванный фильтр пропускает частицы пыли, которые, соударяясь с крыльчаткой компрессора на высокой скорости, изнашивают ее, а заодно и двигатель.

Таким образом, срок службы турбонаддува, в основном, зависит от вашего с ним обращения. Выполняя перечисленные выше рекомендации, вы сможете избавить себя от лишних проблем. Но если возникли какие-то неполадки с т/н, не затягивайте с ремонтом, так как порой хватает нескольких дней для того, чтобы сделать ремонт вашего турбонаддува невозможным. Если т/н не подлежит ремонту, а заменить его нечем, можно попытаться заменить его турбонаддувом с другой модели, от двигателя, обладающего примерно такими же характеристиками, хотя это тоже не всегда возможно и связано с большими переделками. Работать такой т/н будет, хотя и хуже штатного, при условии, что вы найдете человека, который возьмется за такую работу, да и стоить это будет дороже, чем просто ремонт т/н. Но этот путь все-таки лучше, чем заглушка на месте турбонаддува, потому что двигатель изначально все-таки был изготовлен для работы с турбонаддувом и очень отличается от такого же двигателя без т/н (например, двигатели 2L и 2LT). У турбинированного двигателя усилены вкладыши, более мощный коленвал, совершенно другие фазы газораспределения, по-другому отрегулированы и настроены топливная аппаратура, система зажигания и т.д. К тому же машина с заглушенным турбонаддувом по динамике напоминает утюг. И если тот же Nissan Largo даже с работающим т/н не отличается особой резвостью, то об автомобиле с заглушенным и говорить нечего.
Но если вам все же придется заглушить турбонаддув, постарайтесь сделать это грамотно, не создавая лишнего сопротивления на всасывании и выхлопе, это ослабляет и без того ослабленный двигатель. А лучше походите по разборкам и постарайтесь найти свой агрегат, пусть не рабочий, но подлежащий восстановлению. Это окупится и сбереженными при езде нервами, и возможностью лишний раз не попасть в аварийную ситуацию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *