Как должен работать датчик кислорода
Перейти к содержимому

Как должен работать датчик кислорода

  • автор:

Кислородный датчик (лямбда зонд) — показания, принцип работы.

Если вы попали сюда по запросу о показаниях второго (2) лямбда-зонда, то вам СЮДА.

Итак, попробуем разобраться в том как работает датчик кислорода. Ну, как вы уже знаете есть много датчиков, необходимых для работы современного двигателя, но, однако функция других датчиков зачастую не так важна, как функция датчиков кислорода.

Эти датчики считывают количество несгоревшего кислорода в выхлопных газах. Затем компьютер использует это значение для баланса топливной смеси. Когда содержание кислорода в выхлопных газах увеличивается (характеризует смесь как обедненную) выходное напряжение датчиков уменьшается. Это является сигналом для ЭБУ к увеличению объема топлива подаваемого через форсунки. В свою очередь, когда содержание кислорода в выхлопных газах снижается (характеризует смесь как богатую), датчик кислорода увеличивает напряжение выходного сигнала, а компьютер реагирует путем уменьшение подачи топлива. Как только количество топлива уменьшается, мы возвращаемся к обедненной смеси, и напряжение на датчике падает. Этот процесс многократно повторяется пока двигатель работает. Это непрерывный цикл обратной связи является сердцем системы контроля подачи топлива.

Типичные показания датчика при обедненной смеси — напряжение между 0 и 0.3 В и для богатой смеси показания в диапазоне от 0.6 до 1 вольта. Идеальная воздушно-топливная смесь (14.7:1) создает напряжение на выводах датчика 0.5 В

Так почему бы просто не поддерживать постоянно дозированное количество топлива, которое изменяется с положения дроссельной заслонки ? На самом деле, довольно много факторов влияют на количество топлива, которое необходимо для поддержания отношения 14.7:1. Некоторые из этих факторов: качество топлива, атмосферное давление, влажность и многое другое. Таким образом, необходимы О2-датчики (датчики кислорода)! Количество раз в единицу времени обновлений информации датчиками весьма разнятся, но большинство современных датчиков в среднем обновляют показания минимум полдюжины раз в секунду. Старые датчики обновляли показания медленно порядка одного раза в секунду, так что вы можете себе представить насколько лучше стали контролировать выхлоп современные датчики.

Старые кислородные датчики, использовавшиеся до 1982 года были 1 или 2 проводные неподогреваемого типа. Эти датчики не будут на самом деле начинать правильно регистрировать состояние выхлопной пока датчик не нагреется, чтобы достичь свой рабочий диапазон. В результате компьютер работает в режиме «открытого контура» (использование заданных топливных значений, которые фактически заставляют двигатель работать на переобогащенной смеси) в течение более длительных периодов времени. Все датчики нового типа «с подогревом» (датчик ho2s), которые включают нагревательный элемент для приведения датчика до рабочей температуры быстрее, обычно это занимает меньше минуты, так быстро, как это возможно, даже за 10 секунд — это возможно! Нагревательные элементы предотвращают охлаждение датчиков, когда двигатель работает на холостом ходу. Эти подогреваемые датчики имеют обычно 3 и 4 провода в конструкции своих разъемов.

Есть несколько различных видов датчиков, которые различаются по химическому составу и дизайну, но их назначение и функции остаются неизменными. Техника за эти годы вышла далеко за рамки того, что описано на этой странице, но есть несколько вещей, которые нужно понимать. Датчики кислорода сравнивают содержание кислорода в окружающем воздухе с содержанием кислорода в выхлопных газах. Наружного воздух попадает в датчик через отверстие в корпусе датчика или через разъем проводки. Некоторые типы датчиков генерируют (изменяют) напряжение, когда изменяется содержание кислорода в выхлопных газах, а некоторые изменяют сопротивление. Новейший тип, обогреваемые широкополосные O2 датчики (кислородные датчики) имеют диапазон напряжений от 2 до 5 вольт.

Несмотря на все их различия и фактические показания выдаваемые датчиками, компьютер обрабатывает информацию так, что у нас ожидаются значения от 0 до 1 В. Есть пара исключений, конечно. Некоторые типы кислородных датчиков «Титания» с подогревом могут производить напряжение до 5 вольт. Это значение не изменяется с помощью компьютера. Еще один тип того же датчика настроен для чтения значений противоположное тому, что вы ожидаете. Высокое напряжение указывают на бедную смесь и низкое напряжение на богатую. Эти 2 типа датчиков кислорода не распространены и использовались в основном на некоторых Ниссанах, Jeep’ах и Иглах. В каждом правиле должны быть исключения! Инженеры они такие, да, я знаю.

Вы также заметите, что на большинстве автомобилей после ’96 года, есть второй комплект датчиков кислорода за каталитическим нейтрализатором (т.е. там стоит вторая лямбда, он же 2 датчик кислорода). Их функция такая же, как и передних О2 датчиков, а их показания используются по-разному, и их целью является измерить эффективность преобразователей, а не контролировать соотношение топлива двигателя. Вы можете обратиться к нашей статье «коды по датчику кислорода» и «помощь в диагностике» для дальнейшего уточнения показаний датчиков кислорода. Эти статья содержат ценную диагностическую информацию и процедуры проведения испытаний, а также возможные причины кодов ошибок по богатой или бедной смеси. Я надеюсь, что вы нашли эту информацию полезной.

С уважением, перевод предоставлен коллективом мастерской Works-Garage.

Всё, что нужно знать про лямбда-зонд

Smiley face

Как и в любой сложной системе, от которой требуется точная и бесперебойная работа, автомобиль оснащается различными датчиками и контрольными точками. Цель этого подхода ясна: при отказе одного узла остальные начинают сбоить, и нужно сразу видеть неисправность, чтобы вовремя устранить и ее, и возможные последствия. Одной из таких контрольных точек является датчик кислорода или лямбда-зонд, служащий для контроля за работой двигателя.

Назначение

Лямбда-зонд показывает концентрацию остаточного (несгоревшего) кислорода в выхлопе автомобиля.

Чтобы полностью сжечь один литр бензина требуется 14,7 кг воздуха (±0,1 кг). Это соотношение фактического к необходимому объему воздуха называют стехиометрическим или λ=1. При недостаточном количестве воздуха значение будет λ1 (обедненная смесь). При недостатке кислорода топливо не будет полностью сгорать, то есть вместо углекислого газа СО2 в выхлопе будет содержаться ядовитый угарный газ СО. Это, так сказать, экологические последствия недостатка воздуха для двигателя. Есть и технические: хуже сгорает топливо – меньше мощность мотора, быстрей выходят из строя детали и компоненты двигателя. При переобогащенной топливной часть несгоревшего бензина будет попадать в выхлопную систему.

Избыток воздуха (обедненная смесь) чреват сгоранием топлива с превышением нормативной температуры, что опасно повреждением поршней, свечей зажигания, клапанов, и опять-таки снижением мощности двигателя. А ядовитый оксид азота NOх при избытке кислорода не разлагается на безопасный азот N и кислород Oх.

Еще одной деталью, зависящей от правильно оптимального сгорания топлива, является катализатор (каталитический нейтрализатор выхлопных газов). Чем лучше сбалансирована подача топлива и воздуха, тем меньше на него нагрузка, а значит, он дольше прослужит. Стоимость катализатора сегодня стартует от 200$.

Регулировка соотношения топлива и поступающего воздуха осуществляется изменением продолжительности впрыска топливных форсунок. Этим процессом управляет ЭБУ (электронный блок управления), получающий сигнал от датчика.

Итак, лямбда-зонд предназначен для анализа количества остаточного кислорода в выхлопе двигателя. Затем в соответствии с его показаниями происходит подстройка инжекторной системы для получения идеальной насыщенности топливно-воздушной смеси.

Система обратной связи

Электроника, управляющая работой мотора, настраивается нп оптимальные параметры работы еще на конвейере. Но условия работы автомобиля всегда отличаются от идеальных (европейских, азиатских или американских). Да и в процессе эксплуатации двигатель постепенно изнашивается, а значит, необходимо контролировать и корректировать его работу. Эту функцию и выполняет лямбда-зонд в паре с ЭБУ: снятие показаний содержимого выхлопной трубы и на их основании коррекция поступающего в двигатель количества топлива. Обратная связь действует как на бензиновых инжекторных, так и на современных дизельных двигателях: в обоих случаях без нормально работающей лямбды система не сможет оптимально рассчитать расход топлива.

Smiley face

Конструкция лямбда-зонда

Smiley face

Конструкция датчика:
1. Металлический корпус с резьбой и гайкой под ключ. 2. Уплотнительное кольцо.
3. Токосъемник электрического сигнала. 4. Керамический изолятор.
5. Провода. 6. Уплотнительная манжета проводов. 7. Контакт подогрева.
8. Наружный защитный корпус с отверстием для воздуха. 9. Подогрев.
10. Керамический наконечник. 11. Защитный экран с отверстиями.

Главным конструктивным элементом датчика является пустотелый керамический наконечник из оксида циркония, внутри и снаружи которого нанесено пористое платиновое покрытие (внутренний и наружный электроды). При нагреве до 300-350°С керамика приобретает свойства диэлектрика, проводящего сигналы от наружного электрода на внутренний, возникающие при разности соотношения кислорода и выхлопных газов внутри и снаружи системы выхлопа.

Принцип работы

Smiley face

Циркониевая керамика при нагреве приобретает свойства проводника: ионы кислорода проходят от одного электрода к другому, от области с большей концентрацией кислорода (атмосферы) в область с меньшей концентрацией (выхлоп). Создается электрический ток, сила которого напрямую зависит от плотности кислорода с одной и другой стороны. Этот показатель фиксируется, подается на ЭБУ, который, в свою очередь, регулирует продолжительность впрыска (подачи) топлива.

Для нормальной работы датчика его внутренний электрод и наружный должны быть надежно изолированы друг от друга, а погружная часть (которая располагается выпускной системе) – от атмосферного воздуха.

Место установки

В автомобилях устанавливается одна либо две лямбды.

Если конструкцией предусмотрен один датчик, то, в зависимости от того, есть в нем подогрев или нет, он ставится рядом с двигателем (для быстрого прогрева) или дальше, в более удобном месте.

Smiley face

Схема размещения датчика в системе выхлопа

Две лямбды устанавливаются на автомобили с каталитическим нейтрализатором, по обе стороны от него, и дают показания не только о работе двигателя, но и об эффективности работы самого катализатора. Если ставится пара датчиков, то на входе катализатора может находиться широкополосный, а на выходе – двухточечный, либо же оба двухточечные.

Smiley face

Схема установки двух датчиков кислорода: до и после катализатора

Smiley face

Лямбда-зонд в выхлопной трубе

Виды и конструктивные особенности

Независимо от изменений и дополнений конструкции, принцип работы лямбды остается неизменным. Но производители, учитывая недостатки и слабые места зондов, постоянно вносят изменения, улучшающие их работу.

Подогрев

Одно из важных усовершенствований – искусственный подогрев керамического наконечника для ускорения его выхода на рабочую темературу.

Изначально лямбда-зонд (кислородный датчик) разогревался от раскаленных выхлопных газов, поэтому его устанавливали близко к двигателю, где наиболее высокая температура. Но все равно, для прогрева керамического корпуса до 350-400°С требовалось время, в течение которого датчик не работал. Сейчас в большинстве из них установлен электрический нагреватель, ускоряющий выход датчика на рабочий режим. Эта функция не только оптимизирует расход бензина, но и продлевает срок эксплуатации катализатора.

Двухточечный и широкополосный

Простейшая схема работы, описывающая принцип действия лямбда-зонда, относится как раз к двухточечному датчику. Именно он фиксирует разность концентрации кислорода в атмосфере и выхлопе.

Широкополосный датчик является следующим шагом эволюции этого устройства. В основе его работы лежит принудительная закачка кислорода, содержащегося в выпускной системе, в специальную камеру под действием силы тока (в норме 450 мВ). Чем ниже кислорода содержится в отработавших газах, тем выше нужна сила тока для закачки, и перемены данного параметра фиксируется датчиком.

Smiley face

Схема работы широкополосного датчика кислорода

Количество проводов

В зависимости конструкции и наличия дополнительных функций, на выходе лямбды может находиться от 1 до 5 проводков.

Smiley face

Двухточечные датчики без подогрева

Smiley face

Двухточечные датчики с подогревом

Smiley face

Схема проводов широкополосного датчика: Ip(+) — сигнал тока накачки,
Vs(+) — сигнал измерительной ячейки, Ip(-) и Vs(-) — заземление

Разные производители выпускают свои цвета проводов, но, как правило, темные (черные) всегда идут на сигнал.

Smiley face

Циркониевый или титановый?

Керамика для наконечника лямбда-зонда может изготавливаться не только на основе оксида циркония, но и на основе оксида титана. Принцип действия такого датчика несколько отличается: он измеряет не напряжение, а электрическое сопротивление кислорода в выхлопе: чем больше концентрация кислорода (обедненная смесь), тем ниже сопротивление. И наоборот, чем меньше кислорода (переобогащенная смесь), тем сопротивление будет выше.

Титановый датчик намного быстрей реагирует на изменения состава выхлопа, дольше служит, дает более точные показания. Но и цена его выше, чем циркониевых моделей: за качество и длительную работу приходится раскошеливаться.

Циркониевые датчики, хоть и уступают титановым, пользуются большим спросом: они дешевле, а работают вполне приемлемо, особенно при условии соблюдения правил эксплуатации.

Взаимозаменяемость

В случаях, когда по какой-то причине невозможно купить подходящий датчик, его приходится заменять подобным, подбирая наиболее близкий по параметрам.

При замене соблюдается такое правило: если на автомобиле стоял неподогреваемый датчик, вместо него можно поставить подогреваемый, если правильно подключить провод от нагревательного элемента. Но не наоборот! Если система рассчитана на подогрев датчика, ставить зонд без подогрева нельзя, на старте, когда он еще холодный, компьютер будет воспринимать его сигналы как неисправность.

Для тех, кто ездит на старых автомобилях, замена лямбды на более современную возможна, если грамотно переделать соединение с источником питания для нагрева, заземлением и т.д. Некоторые умельцы делают это самостоятельно, однако лучше обратиться в сервис, где мастера выполнят эту работу профессионально. Главное, чтобы резьба на новой лямбде совпала с резьбой гнезда под нее.

А вот заменить титановые датчики на циркониевые значительно сложней, поскольку в них использованы разные принципы получения данных. Без сложного шаманства с такой задачей не справиться.

Сейчас производители выпускают огромное количество модификаций датчиков, так что найти подходящий по параметрам несложно. В любом случае лучше ставить тот, что подходит к конструкции автомобиля без дополнительных плясок с бубном.

Датчик кислорода для дизельных двигателей

Когда на дизельных автомобилях начали применять электронное управление системой питания (вместо ТНВД), лямбда-зонды начали использоваться и на них. Цель та же: уменьшение вредных выхлопов, оптимизация работы двигателя, и в конечном итоге – экономия средств.

Использование лямбда-зонда особенно эффективно в режиме высоких нагрузок, при котором увеличивается дымообразование. И, как и в бензиновых двигателях, применение датчика кислорода помогает более эффективно использовать каталитический нейтрализатор.

Неисправности, их причины, диагностика, последствия и устранение

Лямбда-зонд – один из самых уязвимых датчиков в автомобиле. Его минимальная рабочая температура 350 ⁰ С, а во время работы он может нагреваться до 900 ⁰ С и выше. Выхлопные газы – среда агрессивная, что тоже не упрощает рабочую задачу. Отчего и как ломаются кислородные датчики?

Существуют естественные причины «старения» и выхода из строя лямбды: заправка некачественным топливом (с высоким содержанием свинцовых элементов или присадок), перегрев системы выхлопа и корпуса датчика, прогорание из-за воспламенения паров топлива в системе выпуска. Есть и поломки из-за ошибок в эксплуатации: загрязнение наконечника техническими жидкостями (маслом, антифризом), применение нерегламентированных герметиков во время установки датчика, неправильная установка (отсутствие герметичности). И, наконец, могут банально оборваться либо перетереться провода.

Smiley face

В каждом из этих случаев датчик бесповоротно выходит из строя, и система начинает работать в аварийном режиме. Симптомы поломки лямбда-зонда неоднозначны: они также могут свидетельствовать и про другие проблемы.

Поломка датчика сопровождается такими проблемами:

  • повышение расхода топлива (следствие тог самого аварийного режима работы);
  • увеличение токсичности выхлопа;
  • неровная работа мотора на холостых оборотах;
  • снижение мощности двигателя;
  • черный дым из выхлопной трубы;
  • перегрев самого датчика;
  • изменение цвета датчика, потрескивание после остановки автомобиля;
  • появление сигнала «СНЕСК ЕNGINЕ».

По «поведению» автомобиля сложно сделать однозначный вывод о неисправности именно лямбды. А вот визуальный осмотр места подключения зонда уже может сказать о его неисправности (изменение цвета, слишком сильный нагрев). И даже «СНЕСК ЕNGINЕ» требует разбирательств, этот сигнал загорается при любых сбоях в ЭБУ. Точный ответ на вопрос, в чем именно проблема, может дать только диагностика на СТО.

Smiley face

Причем, если «СНЕСК ЕNGINЕ» загорелся, найти причину неисправности лучше как можно скорей: неработающий лямбда-зонд тянет за собой поломки других деталей, после чего стоимость комплексного ремонта уходит в стратосферу.

Самостоятельно можно определить исправность лямбды простым способом: заменить ее на заведомо рабочую и посмотреть на результат. Если неполадки исчезли, лямбду придется менять.

Ремонт датчика кислорода

Отремонтировать испорченный датчик возможно лишь в том случае, если проблема с проводами и если к месту обрыва есть доступ. Во всех остальных случаях этот прибор восстановлению не подлежит: ни промывка в кислоте, ни оттирание нагара зубной щеткой не дадут сколько-нибудь эффективного результата. Испорченная лямбда подлежит замене. И, конечно, вместе с установкой нового датчика лучше разобраться и устранить ту причину, которая привела к поломке предыдущего. Тогда у нового будут все шансы откатать свои законные 100 тыс. км до регламентной замены.

В наших условиях кислородные датчики ломаются в процессе естественного старения: присадки в топливо и затрудненный пуск двигателя на морозе – главные враги лямбды. Лучше проверять датчик, как и сказано в регламенте, каждые 30 тыс. км, чтобы не пропустить момент замены. Как и с другими запчастями, своевременный сервис является статьей экономии средств и нервов.

О том, как выбрать новый лямбда-зонд, читайте наш «Гид покупателя».

Принцип работы лямбда зонда

В современных системах управления впрыском топлива, едва ли не главную роль выполняет датчик содержания кислорода в выхлопных газах (Oxygen Sensor). Его часто называют лямбда-зонд или О2-датчик, иногда — датчик выхлопа. Задача лямбда-зонда состоит в том чтобы преобразовывать информацию о содержании кислорода в выхлопных газах в эл.сигнал, который, в свою очередь, считывается эл.блоком управления впрыском (ECU).

В современных двигателях оптимальной считается смесь с соотношением 14.7 частей воздуха к 1части топлива. Соотношение воздуха и топлива в составе топливной смеси определяется эл.блоком по полученным сигналам датчиков установленных на двигателе, качество же приготовленной смеси проверяется ECU по сигналам, введенного в обратную связь, датчика О2. При излишне обогащенной или обедненной топливной смеси, эл.блок корректирует ее приготовление с учетом показаний лямбда-зонда. датчик О2 выполняет в системе впрыска топлива одну из основных функций, работа двигателя во многом зависит от его исправного состояния. Самыми важными условиями работоспособности датчика содержания кислорода в выхлопных газах являются:

1. Обеспечение герметичности выхлопного тракта и непосредственно места установки датчика. При замене вышедшего из строя датчика О2 следует смазывать его резьбу специальной токопроводной смазкой для предотвращения заклинивания резьбового соединения. Не стоит применять для этого стандартные смазки, т.к. они не являются токопроводными, а резьбовая часть датчика является для него эл.контактом. Некачественный контакт (или контакт с большим сопротивлением эл.току) приведет к неправильной работе
лямбда-зонда. В некоторых конструкциях предусмотрена установка герметизирующей шайбы. Чаще всего эти шайбы являются одноразовыми и при демонтаже датчика подлежат замене.

2. Считается недопустимым попадание на корпус датчика тормозной или охлаждающей жидкости и других реактивов. Не следует применять для очистки его поверхности какие-либо растворители и активные моющие средства.

3. В связи с малыми рабочими токами, должны быть обеспечены надлежащие контакты в разъемах соединений эл.цепи и проводки датчика О2.

4. Существенно снизить ресурс лямбда-зонда может применение топлива, в состав которого входит высокое содержание свинца (эт.бензин).

5. К выходу из строя датчика может привести перегрев его корпуса. Перегрев может произойти из-за неправильно установленного угла опережения зажигания или сильно переобогащенной топливной смеси. В свою очередь, топливная смесь может быть переобогащена из-за забитого воздушного фильтра, неисправного регулятора давления топлива в системе, неработающего датчика температуры охлаждающей жидкости и др.

Функционально лямбда-зонд работает, как переключатель и выдает напряжение выше порогового (0.45V) при низком содержании кислорода в выхлопных газах. При высоком уровне кислорода датчик О2 снижает это пороговое напряжение ECU. При этом, важным параметром является скорость переключения датчика. В большинстве систем впрыска топлива О2-датчик имеет выходное напряжение от 40–100мВ. до 0.7–1В. Длительность фронта должна быть не более 120мСек. Следует отметить, что многие неисправности лямбда-зонда контроллерами не фиксируются и судить о его исправной работе можно только после
соответствующей проверки.

Проверку работоспособности датчика О2 лучше всего производить с помощью осциллографа. На Рис.3 показан сигнал нормально работающего лямбда-зонда на прогретом двигателе, работающего на ХХ.

grafik_lyambda.jpg

На Рис.4 показан выходной сигнал еще работающего, но изрядно послужившего и практически забитого датчика О2. Данная осциллограмма зафиксировала падение амплитуды выходного сигнала ниже 0V, что говорит о неисправности датчика О2. Данная неисправность датчика чаще всего фиксируется системой самодиагностики и на приборной панели загорается лампочка «CHECK ENGINE», которая сигнализирует о неисправности.

grafik_lyambda.1jpg.jpg

На Рис.5 представлена наиболее распространенная «болезнь» датчиков содержания кислорода в выхлопных газах, которая выражена в замедленной его реакции. Время фронта сигнала (t) значительно превышает 120 мСек. Данная неисправность датчика неминуемо вызывает увеличенный расход топлива и заметное снижение динамики автомобиля, а система самодиагностики ее не зафиксирует, т.к. данный параметр не отслеживается контроллером.

grafik_lyambda2.jpg

Неисправности “замерзших» датчиков О2 не фиксируются контроллером, т.к.амплитудные значения сигналов не выходят из заданного для них диапазона. В большинстве систем впрыска топлива неисправности датчиков могут быть зафиксированы только при выходе их сигнала из этого заданного диапазона. Чаще всего это 0–1В.

Таким образом, однозначно фиксируется только полное отсутствие сигнала и его минусовое значение, в этих случаях ошибка индицируется лампой «CHECK ENGINE». Однако, следует заметить, что в некоторых ECU предусмотрена возможность диагностики и обнаружения неисправности по косвенным признакам (соотношение показаний датчика скорости автомобиля или датчика положения коленвала, датчика положения дроссельной заслонки, расходомера воздуха и др.). В этих случаях индикация «СЕ» может быть включена.

При обнаружении неисправности О2-датчика, контроллер переходит в режим управления впрыском по усредненным параметрам и завышает обогащение

Ресурс датчика содержания кислорода в выхлопных газах обычно составляет от 30 до 70 тыс.км. и в значительной степени зависит от условий эксплуатации. Дольше служат, как правило, датчики с подогревом. Рабочая температура для них обычно 315–320ёC. В конструкцию этих датчиков включен нагревающий элемент, имеющий на разъеме свои контакты. Проверку работоспособности нагревательного элемента таких датчиков можно производить обычным омметром. Сопротивление их обычно составляет от 3 до 15 Ом.

Демонтаж неисправного лямбда-зонда следует производить при температуре двигателя около 50ёC, в противном случае, из-за заклинивания, велик риск сорвать резьбу. Перед тем, как приступать к демонтажу, необходимо при выключенном зажигании отсоединить разъем датчика. На некоторых автомобилях, чтобы снять датчик О2, необходимо демонтировать защитный кожух выпускного тракта. Признаком неисправного лямбда-зонда может служить повышение расхода топлива и ухудшение динамики автомобиля, при этом возможен неустойчивый холостой ход двигателя.

В большинстве своем, сходные по конструкции датчики являются взаимозаменяемыми. Возможна и замена неподогреваемых на подогреваемые О2 (обратную замену я не рекомендую). Однако часто возникает проблема несовместимости разъемов и отсутствие дополнительных проводов питания для подогревающего элемента. При этих заменах можно самостоятельно проложить дополнительные провода и подключить подогреватель к реле зажигания или реле эл.бензонасоса. При этом следует учитывать, что ток потребления подогревателя может составлять до 8–12А. Если есть возможность, лучше эту цепь подключить через дополнительное реле и предохранитель, как показано на Рис.9.

На рис. показана схематика разъемов, которые чаще всего встречаются с распространенными датчиками содержания кислорода в выхлопных газах. Цветовая маркировка проводов, разъемов (и их конструкция) могут различаться и зависят от предприятия (фирмы) изготовителя конкретного датчика или автомобиля. Однако замечено, что сигнальный провод О2 чаще бывает более темного цвета, чем его подогревателя. Цветовая маркировка проводов подогревателя датчика, чаще всего бывает одноцветной (часто белого цвета), но отличной от сигнального провода.

В заключение хочу отметить, что датчик содержания кислорода в выхлопных газах устанавливается, как правило, в паре с катализатором. Многие автовладельцы считают, что они взаимосвязаны функционально и могут работать только в паре. Однако это не совсем так. В большинстве автомобилей лямбда-зонд установлен на выхлопном тракте до катализатора. В этом случае катализатор не может влиять на работу датчика, хотя обратная зависимость есть и заключается в том, чтобы система впрыска топлива регулировала топливную смесь не обогащая ее, таким образом продляя срок службы катализатора.

Некоторые автовладельцы самостоятельно заменяют вышедший из строя катализатор на резонатор и отключают лямбда-зонд. В этом случае ECU работает по усредненным значениям и не может обеспечить оптимального приготовления состава топливной смеси. Кроме того, добиться низкого уровня содержания СО в выхлопных газах на таких автомобилях бывает весьма проблематично. Часто в этих случаях после отключения аккумулятора работа двигателя становится неустойчивой и не всегда оптимизируется даже после значительного пробега автомобиля, т.к. не во всех ECU есть система коррекции режимов сохраняемых в оперативной памяти и, при отключении питания, ECU теряет эти значения. Восстановление этих значений порой может быть дороже стоимости нового катализатора вместе с О2.

Бесконтрольность датчика О2 может привести к его полному разрушению, а ведь его основу составляют керамические пластины. Самым серьезным следствием отключенного лямбда-зонда может стать вышедший из строя двигатель, т.к. на многих автомобилях из-за растянувшегося ремня ГРМ (и не только) могут не плотно быть закрыты выпускные клапана в начале обратного хода поршня. В этот момент очень велик риск попадания керамики в камеру сгорания, а чем это грозит догадаться не трудно.

Если вы решили заменить катализатор на резонатор или просто его удалить, не стоит отключать лямбда-зонд, а если и он вышел из строя, то установите новый датчик. В автомобилях где лямбда-зонд установлен на катализаторе, дело обстоит еще сложнее, т.к. О2 контролирует уже очищенный выхлоп. В этом случае, если удален катализатор (даже если сохранен О2), добиться оптимальной работы двигателя бывает достаточно трудно, т.к. программа ECU может быть не рассчитана на более «грязный» выхлоп и часто воспринимает
это как неисправность лямбда-зонда.

Настоятельно рекомендую проверять работу датчика содержания кислорода в выхлопных газах не реже одного раза через каждые 5000–10000 км. пробега автомобиля. Решением данной проблемы контроля может стать установленный на приборной панели индикатор работы лямбда-зонда.

Vladimir Kalinovsky
Corsa Automotive
2307 McDonald Ave
Brooklyn, NY 11223
(718) 998–0770
fax (718) 627–7312
Внимание! Проверку работы датчика содержания кислорода в выхлопных газах следует проводить на прогретом двигателе и частоте вращения коленвала на оборотах обычного Х.Х.+1200. Щуп осциллографа необходимо подключать к сигнальному проводу О2 не отключая датчик от контроллера.

Отключить диагностические лямбда зонды, что избавит от необходимости их менять, можно с помощью чип тюнинга. Это позволит полностью удалить каталитический нейтрализатор.

Все что нужно знать о лямбда-зонде
Виды, принцип работы и способы диагностирования

lyambda-zond

Основная задача лямбда-зонда состоит в том, чтобы информировать блок управления о том, на сколько полно сгорает топливовоздушная смесь. Лямбда-зонд определяет количество кислорода в выхлопных газах и именно на основе этих данных и определяется состав топливовоздушной смеси.

Теория гласит, что на 1 кг. топлива необходимо 14.7 кг. воздуха. Именно при таких условиях топливовоздушная смесь сгорает полностью, без образования излишков вредных веществ и топливо не “вылетает в трубу”.

Пропорция 14.7 к 1 называется фактором избыточного количества воздуха и обозначается греческой буквой λ (лямбда).

Если λ 1 (лямбда больше единицы), значит топливовоздушная смесь бедная. То есть количество топлива в ней меньше.

Как работает узкополосный лямбда-зонд?

Под защитным металлическим колпачком лямбда-зонда находится чувствительный элемент, который изготовлен из диоксида циркония. Данная керамика является электролитом, то есть пропускает электрический ток, но для газов она не проницаема.

В этом чувствительном элемента снаружи и внутри есть газопроницаемая платиновое контактное покрытие, к которому подведены сигнальные провода.

Рабочая температура лямбда-зонда – 350°С. Ранние версии лямбда-зондов не были оснащены принудительным подогревом и подогревались напрямую от выхлопных газов. А вот более поздние версии оснащены принудительным подогревом и на рабочую температуру выходят значительно раньше.

Итак, каков же принцип его работы? Всё довольно просто. Внутренняя часть керамики сообщается с воздухом, а её внешняя поверхность с выхлопными газами. Разница в концентрации молекул кислорода в выхлопных газах и в окружающем воздухе приводит к перемещению ионов кислорода из области с высоким, его содержанием, в область с низким содержанием того же самого кислорода. Ионы перемещаются через керамический элемент, который является твердым электролитом.

Именно разница в количестве кислорода снаружи и внутри сенсора и формирует сигнальное напряжение 0,45 вольт = 1λ (0,45 вольта напряжения равняется единице лямбда). Бедная топливовоздушная смесь генерирует напряжение 0,1 вольт. Богатая смесь – 0,9 вольт.

Именно так и работает узкополосный датчик. Он способен фиксировать в диапазоне от 14 до 15 к 1 отклонения лямбды. Если упростить, то можно сказать, что он просто способен фиксировать отклонения лямбды в ту или иную сторону.

К узкополосному датчику может быть подведено от 3-х до 4-х проводов. Если проводов четыре, то два белых идут на нагреватель, черный на сигнал к ЭБУ, серый – масса. Если подведено 3 провода, значит, не подводится масса, в таком случае датчик соединяется с ней (массой) своим корпусом.

Подходящие услуги нашего автосервиса:

Как диагностировать неисправность узкополосного лямбда-зонда?

uzkopolosniy

Для диагностики узкополосного датчика можно снять осциллограмму, либо посмотреть на него при помощи диагностического ПО. Сигнал должен меняться часто, не менее 1-го раза в секунду. Напряжение должно быть от 0,1 до 0,9 вольта. Если напряжение меньше или сигнал меняется не так часто, значит лямбда-зонд неисправен.

Также, лямбда-зонд должен активно реагировать на изменение состава топливовоздушной смеси. Кстати, её состав можно изменить извне. Для её обогащения нужно прыснуть пропаном во впуск и тогда сигнальное напряжение должно подскочить до 0,9 вольт.

Для обеднения смеси нужно создать избыток воздуха, то есть снять одну из вакуумных трубок, тогда сигнальное напряжение провалится до значения 0,1 вольта.

Можно поступить проще – открыть и закрыть дроссельную заслонку. То есть нажать и отпустить педаль газа. Тогда показания исправного лямбда-зонда должны быстро измениться от бедной до богатой смеси, после чего быстро стабилизироваться.

Такой способ отлично подходит, когда в выпускной системе есть два катализатора и два верхних лямбда-зонда. Обычно такая схема применяется на V-образных и 6-ти цилиндровых двигателях.

Тогда показатели обоих датчиков можно сравнить и, как правило, неисправный будет отставать.

Работоспособность нагревательного элемента проверяется также просто. Для этого нужно убедиться в том, что с аккумулятора подается питание от 9 до 12 вольт, в зависимости от автомобиля. После этого нужно измерить сопротивление нагревателя. У исправного датчика, оно должно составлять от 2,3 до 4,3 Ом.

Если элемент снят, то его можно запитать от АКБ, тогда исправный нагреватель, в течение нескольких минут должен нагреться до 350°С, то есть до рабочей температуры.

Подходящие услуги нашего автосервиса:

Как работает лямбда-зонд на основе оксида титана?

shirokopolosniy

Некоторое время на автомобилях использовались датчики кислорода на основе оксида титана. Как правило, такой датчик в выпускной системе один и к нему подходят 3 или 4 провода. Такой датчик более точный, чем циркониевый и более дорогой.

Датчик данного типа не сообщается с атмосферой, не генерирует напряжение и имеет увеличенный диапазон измерения.

Он запитывается и работает по принципу расходомера. То есть подключается к ЭБУ и подает сигнал в виде напряжения. Данный сигнал непрерывно изменяется, примерно 1 раз в секунду в диапазоне от 0,4 до 4.5 вольт. Низкое напряжение указывает на богатую смесь, высокое – на бедную.

Как работает широкополсный лямбда-зонд?

Вот мы и подобрались к самому современному решению от автопроизводителей – широкополосному лямбда-зонду, так называемому датчику Воздух/Топливо (A/F sensor).

В его косе, обычно, 5-6 проводов. Этот датчик способен измерять состав топливовоздушной смеси во всём диапазоне, по величине и направлению тока.

Например, широкополосные лямбда-зонды используются и на автомобилях Ford, которые мы профессионально ремонтируем и обслуживаем в нашем автосервисе. Для примера широкополосный пятипроводный датчик используется в Ford Focus ST II. На остальных двигателях Фокуса, которые мы также ремонтируем, используются узкополосные четырехпроводные датчики.

Такие датчики обычно используются на бензиновых двигателях, которые работают на бедной смеси, а также на бензиновых двигателях с прямым впрыском, а также на дизельных двигателях. И всё потому что они очень точные. Рабочая температура датчиков этого типа – 650°С.

Получая данные от кислородных датчиков, ЭБУ постоянно регулирует подачу топлива на основе поступающего в цилиндры воздуха.

Так как датчики кислорода находятся в выпускной системе, на некотором расстоянии от камер сгорания, то лямбда-регулирование далеко от идеала. На практике состав топливовоздушной смеси постоянно колеблется от лямбды в ту или иную сторону, с интервалом 1-2 раза в секунду.

Интересная особенность широкополосного датчика заключается в том, что фиксируемое им сигнальное напряжение является выдуманным и существует только для наглядности. Увидеть его можно с помощью диагностического ПО, после чего его нужно сравнить с эталонными данными того или иного производителя. Упрощённо, любое напряжение, хоть 1,1, хоть 3,3 Вольта может быть рабочим, все зависит от типа датчика и от автопроизводителя.

Сигнал должен быть постоянным и не изменяющимся. Сигнал должен изменяться только при обогащении или обеднении топливовоздушной смеси, для этого, как мы уже говорили можно впрыснуть пропан во впускной коллектор, либо снять вакуумную трубку с него же. Богатая смесь генерирует высокое напряжение, бедная – низкое.

Заключение

Итак, мы выдали все что знали о лямбда-зондах, в теории. Конечно же, если у Вас возникли проблемы с ним на Вашем автомобиле, то всего написанного, скорее всего, окажется недостаточно, даже для того чтобы провести диагностику, так как Вам как минимум, понадобится сервисное ПО.

Поэтому, обращайтесь в наш автосервис, проверенный многими автовладельцами Зеленограда. У нас работают грамотные специалисты, в том числе и высококлассные диагносты. Мы сможем точно определить причину неисправности в Вашем автомобиле и устранить их в минимальные сроки, по самым доступным ценам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *