Где расположен датчик температуры на камаз
Перейти к содержимому

Где расположен датчик температуры на камаз

  • автор:

Здравствуйте. На приборной панели не работает температура. Камаз 6520 Евро-3 (2013)ХТС652003 С1278533 тип двигателя 740630 С2724634. Тестировали датчик (тот что на термостатах), работает. Пучок проводов целый. Может где то находится еще датчик температуры?

Здравствуйте! На Вашем авто установлен щиток приборов Аметек TS-1. На указатель температуры (он справа скраю рядом с тахометром) поступает сигнал не от датчика, а с электронного блока, тот что впереди двигателя. Но определить что отказало, можно поменять щиток с рабочего авто. Если не работает нужно обратиться в сервисный центр где можно определить тестером неисправность. Если показания температуры появились менять нужно щиток. Все равно неисправность определить вдали от авто затруднено.

Где находится датчик температуры и как он работает?

Датчик температуры охлаждающей жидкости обеспечивает раннее предупреждение о перегреве двигателя, что позволяет заглушить автомобиль прежде, чем произойдёт что-либо печальное и чаще всего довольно дорогостоящее в ремонте. В очень холодную погоду датчик температуры двигателя может также показать нам, переохлаждён ли двигатель в настоящее время (что приведет к увеличенному расходу топлива и износу двигателя) и необходимо ли увеличить обороты, чтобы тот не заглох и быстрее прогрелся.

Работа биметаллического ленточного датчика. Его главное визуальное отличие заключается в том, что он включается постепенно, когда Вы включаете зажигание. Блок датчиков позволяет току изменяться в зависимости от температуры двигателя и, в свою очередь, нагревать катушку на ленточном стержне. Биметаллические полоски внутри катушки поворачивают стрелку на величину, зависящую от величины тока, чтобы в конечном счёте дать показания температуры.

Датчики температуры используются не только для измерения теплоты охлаждающей жидкости двигателя, хотя это их основное применение. Машины часто имеют датчики, установленные в ней для измерения температуры масла в двигателе, так как она может сильно увеличиться в тяжёлых условиях. Некоторые гоночные автомобили даже имеют датчики для контроля температуры коробки передач и масла в дифференциале. Ну и, конечно же, не следует забывать о датчике температуры окружающего воздуха.

Современные двигатели часто снабжены серией температурных датчиков, распределённых вокруг охлаждающих и масляных каналов. Они дают не просто статичное представление о температуре охлаждающей жидкости, но и динамичекую информацию о путях, в которых двигатель нагревается под нагрузкой, так что изменения могут быть внесены умным бортовым компьютером в систему очень быстро, чтобы дать больше охлаждения в перегретые районы.

Система измерения температуры двигателя, как правило, состоит из двух элементов: сам датчик температуры и блок датчика, который контролирует его — они оба соединены между собой с помощью одного провода.

Типы датчиков температуры охлаждающей жидкости

Выше мы привели схему работы биметаллического датчика. Однако, существует два основных типа механизмов температурных датчиков охлаждающей жидкости:

  • магнитные датчики
  • биметаллические датчики.

Вы можете сами определить, какой тип датчика температуры установлен в Вашем автомобиле, по тому, как быстро он реагирует, когда Вы включаете зажигание машины. Стрелка указателя температуры в магнитном датчике сразу подпрыгивает, чтобы дать показания; а биметаллические датчики медленно и после некоторой паузы двигают стрелку к чтению температуры.

Где же находится датчик? Температурные датчики почти всегда встроены в корпус указателя температуры автомобиля на приборной панели. Блок датчика, однако, может находиться в одном из нескольких мест:

  • на корпусе термостата
  • на головке блока цилиндров
  • на верхнем шланге радиатора.

Однако, во всех случаях датчик расположен так, чтобы быть на пути течения охлаждающей жидкости из двигателя к радиатору.

Магнитные датчики температуры

Магнитный датчик — это пара катушек, по одной на каждой стороне от поворотного железного якоря, который держит стрелку. Катушки подключаются непосредственно к электрической сети автомобиля — один из проводов заземлён по прямой, в то время как другой провод проходит через датчик, сопротивление которого изменяется в зависимости от температуры двигателя. Ток, протекающий через катушки, создаёт магнитное поле, которое перемещает якорь в ту или иную сторону в зависимости от температуры двигателя. Величина перемещения зависит от разницы в магнитных полях, создаваемых двумя катушками. Эта разница, в свою очередь, зависит от размера тока, пропускаемого от сенсорного блока.

Биметаллические датчики температуры

Работу биметаллических датчиков температуры мы рассмотрели выше. Основной принцип работы таких датчиков заключается в свойстве веществ расширяться и сужаться в зависимости от их температуры. У металлов такое сужение едва заметно даже в случае, когда мы измеряем их огромные масштабы. Но главное в том, что у разных металлов коэффициент такого расширения также отличается. Что это нам даёт. Давайте плотно и надёжно приклеим две пластины из стали и меди, а затем нагреем их. В результате нагрева обе пластины совсем чуть-чуть увеличатся, однако, медная пластина имеет больший коэффициент расширения и потому увеличится немного больше стали, и, став немного длиннее и будучи крепко соединённой со стальной пластиной, просто согнётся, пытаясь обогнуть стальную пластину. Этот эффект в технике часто и называют «биметаллической структурой».

В биметаллическом датчике эту роль играет стержень, который едва заметно изменяет свою длину, однако, этого вполне хватает для движения стрелки указателя температуры охлаждающей жидкости.

Есть два типа сенсорных блоков, которые работают совместно с датчиками температуры: полупроводниковые и биметаллические планочные.

Полупроводниковые сенсорные блоки на сегодняшний день являются наиболее распространённым типом и состоят из элемента полупроводникового резистора в металлической капсуле. Главная особенность этого полупроводника заключается в том, что сопротивление этого полупроводника уменьшается с ростом температуры охлаждающей жидкости. По мере того, как двигатель нагревается, сопротивление датчика уменьшается, увеличивая ток в датчике.

Биметаллической принцип используется гораздо реже. Движение биметаллической полоски внутри нагревательной катушки в датчике открывает пару контактов, увеличивая или уменьшая ток, текущий к указателю на приборной панели.

Капиллярные датчики

Но есть ещё один очень старый тип датчиков температуры охлаждающей жидкости двигателя — капиллярный. Он основан на прямой связи между непосредственно датчиком и указателем температуры.

Принцип работы этого типа датчика заключается в том, что самим датчиком является ёмкость, содержащая жидкость с низкой температурой кипения, и соединённая с указателем с помощью тонкой металлической капиллярной трубки. В то время как датчик нагревается, жидкость испаряется или кипит, повышая давление в колбе. Это давление передаётся через капиллярную трубку к указателю, а там расположена так называемая трубка Бурдона, которая имеет свойство распрямляться под давлением, чтобы передвинуть индикаторную стрелку на приборной панели.

Недостатком этой конструкции является то, что все эти датчики и трубки должны оставаться единым целым механизмом, то есть довольно длинная трубка должна проходить через весь капот машины до приборной панели, что создаёт большие трудности при ремонте и обслуживании автомобиля. Кроме того, тонкая капиллярная трубка может быть легко повреждена, и когда это происходит, весь узел датчикам должен быть заменён.

Сигнальная лампа перегрева двигателя на панели приборов

Лампочка перегрева или холодного двигателя работает по тому же принципу, что биметаллический датчик температуры — нагретая металлическая пластина сгибается, соединяя контакты для этой сигнальной лампочки, впоследствии чего она загорается.

Где находится датчик температуры?

Как мы уже знаем, температурный датчик охлаждающей жидкости находится чаще всего на корпусе двигателя. Чаще всего он расположен на верхней части его корпуса и выглядит почти всегда одинаково для всех моделей автомобилей:

Глава 7.7 Система охлаждения КамАЗ-740

Система охлаждения предназначена для обеспечения оптимального теплового режима работы двигателя. Система охлаждения двигателя жидкостная, закрытого типа, с принуди­тельной циркуляцией охлаждающей жидкости. К основным агрегатам и узлам системы ох­лаждения относятся: радиатор, вентилятор с вязкостной муфтой привода, кожух вентилято­ра, обечайка вентилятора, корпус водяных каналов, водяной насос, термостаты, каналы и соединительные трубопроводы для прохода охлаждающей жидкости.

Схема системы охлаждения с соосным коленчатому валу вентилятором и с вязкостной муфтой привода вентилятора приведена на рисунке 30.

Схема системы охлаждения КамАЗ-740

Рисунок 30. Схема системы охлаждения:
1 — расширительный бачок; 2 — пароотводящая трубка; 3 — трубка отвода жидкости из компрессора; 4 — канал выхода жидкости из правого ряда головок цилиндров; 5 — соединительный канал; 6 — канал выхода жидкости из левого ряда головок цилиндров; 7 — входная полость водяного насоса; 8 — водяной насос; 9 — канал входа жидкости в левый ряд гильз цилиндров; 10 — канал подвода жидкости в водяной насос из радиатора; 11 — выходная полость водяного насоса; 12 — соединительный канал; 13 — перепускной канал из водяной коробки на вход водяного насоса; 14 — канал входа жидкости в правый ряд гильз цилиндров; 15 — канал отвода жидкости в теплообменник масляный; 16 — теплообменник масляный; 17 — водяная коробка; 18 — трубка подвода жидкости в компрессор; 19 — перепускная труба.

Во время работы двигателя циркуляция охлаждающей жидкости в системе создается водяным насосом 8. Охлаждающая жидкость из насоса 8 нагнетается в полость охлаждения левого ряда цилиндров через канал 9 и через канал 14 — в полость охлаждения правого ряда цилиндров. Омывая наружные поверхности гильз цилиндров, охлаждающая жидкость через отверстия в верхних привалочных плоскостях блока цилиндров поступает в полости охлаждения головок цилиндров. Из головок цилиндров нагретая жидкость по каналам 4, 5 и 6 поступает в водяную коробку корпуса водяных каналов 17, из которой, в зависимости от температуры, направляется в радиатор или на вход насоса. Часть жидкости, отводится по каналу 15 в масляный теплообменник 16, где происходит передача тепла от масла в охлаждающую жидкость. Из теплообменника охлаждающая жидкость направляется в водяную рубашку блока цилиндров в зоне расположения четвертого цилиндра.

Тепловой режим двигателя регулируется автоматически:

— двумя термостатами, которые управляют направлением потока жидкости в зависимости от температуры охлаждающей жидкости на выходе из двигателя. Номинальная температура охлаждающей жидкости на выходе из двигателя должна находиться в пределах 85. 90 °С.

— вязкостной муфтой привода вентилятора в зависимости от температуры воздуха на выходе из радиатора ОНВ.

Корпус водяных каналов (рисунок 30) отлит из чугунного сплава и закреплен болтами на переднем торце блока цилиндров.

В корпусе водяных каналов отлиты входная 7 и выходная 11 полости водяного насоса, соединительные каналы 5 и 12, каналы 9 и 14, подводящие охлаждающую жидкость в блок цилиндров, каналы 4 и 6, отводящие охлаждающую жидкость из головок цилиндров, перепускной канал 13, канал 15 отвода в масляный теплообменник, полости водяной коробки 17 для установки термостатов, канал 10 подвода охлаждающей жидкости в водяной насос из радиатора.

Насос водяной (рисунок 31) центробежного типа, установлен на корпусе водяных ка­налов. В корпус 1 запрессован радиальный двухрядный шарико-роликовый подшипник с валиком 6. С обеих сторон торцы подшипника защищены резиновыми уплотнениями. Смаз­ка в подшипник заложена заводом-изготовителем. Пополнение смазки в эксплуатации не требуется. Упорное кольцо 8 препятствует перемещению наружной обоймы подшипника в осевом направлении. На концы валика подшипника напрессованы крыльчатка 3 и шкив 7. Сальник 2 запрессован в корпус насоса, а его кольцо скольжения постоянно прижато пру­жиной к кольцу скольжения 5, которое вставлено в крыльчатку через резиновую манжету 4.

Насос водяной КамАЗ-740

Рисунок 31. Насос водяной:
1 — корпус; 2 — сальник; 3 — крыльчатка; манжета уплотнительная; 5 — кольцо скольжения; 6 — подшипник радиальный шарико-роликовый с валиком; 7 — шкив; 8 — кольцо упорное.

В корпусе насоса между подшипником и сальником выполнено два отверстия: нижнее и верхнее. Верхнее отверстие служит для вентиляции полости между подшипником и саль­ником, а нижнее — для контроля исправности торцового уплотнения.

Подтекание жидкости из нижнего отверстия свидетельствует о неисправности уплот­нения. В эксплуатации оба отверстия должны быть чистыми, так как их закупорка приведет к выходу из строя подшипника.

Сальник водяного насоса (рисунок 32) состоит из латунного наружного корпуса 1, в который вставлена резиновая манжета 2. Внутри манжеты размещена пружина 3 с внутрен­ним 4 и наружным 5 каркасами. Пружина поджимает кольцо скольжения 6. Кольцо скольже­ния изготовлено из графито-свинцового твердо-прессованного антифрикционного материа­ла.

Сальник водяного насоса КамАЗ-740

Рисунок 32. Сальник водяного насоса:
1 — корпус наружный; 2 — манжета; 3 — пружина; 4 — внутренний каркас; 5 — наружный каркас; 6 — кольцо скольжения.

Вентилятор и муфта вязкостная (рисунок 33).

Девятилопастной вентилятор 1 диаметром 710 мм изготовлен из стеклонаполненного полиамида, ступица вентилятора 3 — металлическая.

Для привода вентилятора применяется автоматически включаемая муфта 2 вязкостно­го типа, которая крепится к ступице вентилятора 3.

Принцип работы муфты основан на вязкостном трении жидкости в небольших зазорах между ведомой и ведущей частями муфты. В качестве рабочей жидкости используется сили­коновая жидкость с высокой вязкостью.

Вентилятор с муфтой привода КамАЗ-740

Рисунок 33. Вентилятор с муфтой привода:
1 — вентилятор; 2 — муфта; 3 — ступица; 4 — термобиметаллическая спираль.

Муфта неразборная и не требует технического обслуживания в эксплуатации.

Включение муфты происходит при повышении температуры воздуха на выходе из ра­диатора до 61. 67 °С. Управляет работой муфты термобиметаллическая спираль 4.

Вентилятор размещен в неподвижной кольцевой обечайке, жестко прикрепленной к двигателю. Кожух вентилятора, обечайка вентилятора способствуют увеличению расхода потока воздуха нагнетаемого вентилятором через радиатор. Кожух вентилятора и обечайка вентилятора соединены кольцевым резиновым уплотнителем П-образного сечения.

Радиатор (автомобилей КАМАЗ) медно-паяный, для повышения теплоотдачи охлаж­дающие ленты выполнены с жалюзийными просечками, крепится боковыми кронштейнами через резиновые подушки к лонжеронам рамы, а верхней тягой к объединительному воздуш­ному коллектору.

Термостаты (рисунок 34) позволяют ускорить прогрев холодного двигателя и поддер­живать температуру охлаждающей жидкости не ниже 75 °С путем изменения ее расхода че­рез радиатор. В водяной коробке 5 корпуса водяных каналов установлено параллельно два термостата с температурой начала открытия (80+2) °С.

Термостаты КамАЗ-740

Рисунок 34. Термостаты:
1 — датчик указателя температуры; 2 — датчик сигнализатора аварийного перегрева; 3 — канал выхода жидкости из двигателя; 4 — канал перепуска жидкости на вход водяного насоса; 5 — коробка водяная; 6 — перепускной клапан; 7 — пружина перепускного клапана; 8 — резиновая вставка; 9 — наполнитель; 10 — баллон; 11 — пружина основного клапана; 12 — основной клапан; 13 — поршень; 14 — корпус; 15 — патрубок водяной; 16 — прокладка.

При температуре охлаждающей жидкости ниже 80 °С, основной клапан 12 прижимает­ся к седлу корпуса 14 пружиной 11 и перекрывает проход охлаждающей жидкости в радиа­тор. Перепускной клапан 6 открыт и соединяет водяную коробку корпуса водяных каналов по перепускному каналу 4 с входом водяного насоса.

При температуре охлаждающей жидкости выше 80 °С, наполнитель 9, находящийся в баллоне 10, начинает плавиться, увеличиваясь в объеме. Наполнитель состоит из смеси 60 % церезина (нефтяного воска) и 40 % алюминиевой пудры. Давление от расширяющегося наполнителя через резиновую вставку 8 передается на поршень 13, который, выдавливаясь наружу, перемещает баллон 10 с основным клапаном 12, сжимая пружину 11. Между корпу­сом 14 и клапаном 12 открывается кольцевой проход для охлаждающей жидкости в радиа­тор. При температуре охлаждающей жидкости 93 °С происходит полное открытие термоста­та, клапан поднимается на высоту не менее 8,5 мм.

Одновременно с открытием основного клапана вместе с баллоном перемещается пере­пускной клапан 6, который перекрывает отверстие в водяной коробке корпуса водяных кана­лов, соединяющее ее с входом водяного насоса.

При понижении температуры охлаждающей жидкости до 80 °С и ниже, под действием пружин 7 и 11 происходит возврат клапанов 12 и 6 в исходное положение.

Для контроля температуры охлаждающей жидкости, на водяной коробке корпуса водя­ных каналов установлено два датчика температуры 1 и 2. Датчик 1 выдает показания теку­щего значения температуры на щиток приборов, датчик 2 служит сигнализатором перегрева охлаждающей жидкости. При повышении температуры до 98 — 104 °С на щитке приборов загорается контрольная лампа аварийного перегрева охлаждающей жидкости.

Расширительный бачок 1 (рисунок 30) установлен на двигателе автомобилей КА­МАЗ с правой стороны по ходу автомобиля. Расширительный бачок соединен перепускной трубой 19 с входной полостью водяного насоса 13, пароотводящей трубкой 2 с верхним бачком радиатора и с трубкой отвода жидкости из компрессора 3.

Расширительный бачок служит для компенсации изменения объема охлаждающей жидкости при ее расширении от нагрева, а также позволяет контролировать степень за­полнения системы охлаждения и способствует удалению из нее воздуха и пара. Расшири­тельный бачок изготовлен из полупрозрачного сополимера пропилена. На горловину бачка навинчивается пробка расширительного бачка (рисунок 35) с клапанами впускным 6 (воздушным) и выпускным (паровым). Выпускной и впускной клапаны объединены в блок кла­панов 8. Блок клапанов неразборный. Выпускной клапан, нагруженный пружиной 3, под­держивает в системе охлаждения избыточное давление 65 кПа (0,65 кгс/см 2 ), впускной кла­пан 6, нагруженный более слабой пружиной 5, препятствует созданию в системе разряжения при остывании двигателя.

Рисунок 35. Пробка расширительного бачка:
1 — корпус пробки; 2 — тарелка пружины выпускного клапана; 3 — пружина выпускного клапана; 4 — седло выпускного клапана; 5 — пружина клапана впускного; 6 — клапан впускной в сборе; 7 — прокладка выпускного клапана; 8 — блок клапанов.

Впускной клапан открывается и сообщает систему охлаждения с окружающей средой при разряжении в системе охлаждения 1. 13 кПа (0,01. 0,13 кгс/см 2 ).

Заправка двигателя охлаждающей жидкостью производится через заливную горлови­ну расширительного бачка. Перед заполнением системы охлаждения надо предварительно открыть кран системы отопления.

Для слива охлаждающей жидкости следует открыть сливные краны теплообменника и насосного агрегата предпускового подогревателя, отвернуть пробки на нижнем бачке ра­диатора и расширительного бачка.

ВНИМАНИЕ!

Не допускается открывать пробку расширительного бачка на горячем двигателе, так как при этом может произойти выброс горячей охлаждающей жидкости и пара из горло­вины расширительного бачка.

Эксплуатация автомобиля без пробки расширительного бачка не допускается.

РЕГУЛИРОВКУ натяжения (рисунок 36) ремня поликлинового 2 привода генератора и водяного насоса для двигателей с расположением вентилятора по оси коленчатого вала вы­полнить следующим образом:

— ослабить болт 11 крепления задней лапы генератора, гайку 10 крепления передней ла­пы генератора, болт 8 крепления планки генератора, болт 5 крепления болта натяжного;

— перемещением гайки 6 обеспечить необходимое натяжение ремня; гайкой 7 зафикси­ровать положение генератора;

— затянуть болты 5, 8 и 11, затянуть гайку 10.

После регулировки проверить натяжение:

— правильно натянутый ремень 2 при нажатии на середину наибольшей ветви усилием 44,1± 5 Н (4,5 ± 0,5 кгс) должен иметь прогиб — 6. 10 мм.

Рисунок 36. Схема проверки натяжения ремней привода генератора и водяного насоса с расположением вентилятора по оси коленвала:
1 — шкив водяного насоса; 2 — ремень поликлиновой; 3 — шкив коленчатого вала; 4 — натяжной ролик; 5, 8, 11 — болты; 6,7, 10 — гайки; 9 — шкив генератора.
F=44,1 ± 5 Н (4,5 ± 0,5 кгс).

Хотите быть в курсе событий? Подпишитесь на новости!

Где находится датчик температуры КАМАЗа

Где находится датчик температуры КАМАЗа

Специфика работы грузовых автомобилей связана с сильными нагрузками. Высоконагруженные механизмы имеют свойство изрядно нагреваться. Усугубляется положение большим количеством смазок, рабочих жидкостей, находящихся внутри механизмов, обеспечивающих нужную силу трения, которые также подвержены перегреву. Перегреть мотор можно только один раз, после чего придется покупать новый. Иными словами, детали двигателя соприкасаются с сильно нагретыми газами, совокупно также сильно нагреваясь. Обратная сторона процесса — переохлаждение, также недопустимо. Переохлажденные детали увеличивают общие теплопотери мотора, увеличивая трение между запчастями. Загустевают смазочные жидкости, снижаются мощность и экономичность. Хороший тепловой режим механизма составляет порядка восьмидесяти пяти градусов — идеальная температура работы компонентов.

За годы активной эксплуатации Камазов конструкторы выработали множество вариаций моторов разных классов типа Евро 1, 2, 3, 4, отвечающих общепринятым стандартам экологичности, экономичности, интеллекта. Самые популярные разработки произведены на базе моделей 6520, однако реновации затронули также Камазы 65115, 43118, где были изменены многие параметры работы дизеля, в том числе и усовершенствованы охладительные возможности.

Принцип работы

Работа системы направлена на регулирование температурного коэффициента внутри двигателя. Камазы имеют несложное строение системы охлаждения, состоящей из нескольких основных частей.

  • Коленчатый вал двигателя оказывает воздействие на привод. Привод связан с водяным насосом, поэтому при собственном движении, он затрагивает водяной насос, заставляя его работать.
  • Внутри полости водяного насоса находится крыльчатка. При вращении, крыльчатка вызывает разряжение механизмов.
  • Разряженный антифриз поступает внутрь водяного насоса из нижнего бачка. Далее жидкость следует в специальную рубашку охлаждения блоков цилиндра, далее затрагиваются головки блоков, после чего механизм оказывает влияние на термостат.
  • При нагреве менее семидесяти пяти градусов, антифриз вырабатывает цикл, минуя радиатор охлаждения, ведь он слишком холодный, чтобы еще более охлаждаться.
  • Нагрев до девяносто пяти градусов заставляет открыться термостаты полностью, тогда охлаждающая жидкость проходит непосредственно через радиатор, охлаждаясь потоком воздуха внутри радиатора, который создает вентилятор охлаждения.

Система охлаждения поддерживает заданную корректную рабочую температуру. В различных моделях Камаза модификация СО может быть различной. Например, моторы серии 740 имеют жидкостное строение закрытого типа. Закрытый тип характеризуется атмосферным сообщением циркулятивных клапанов через паровоздушные клапаны, остальные типы взаимодействуют напрямую. Закрытый тип имеет ряд преимуществ, основным из которых является возможность повышения температуры кипения охлаждающей жидкости при практически полном устранении потерь через выкипание. Иными словами, нагретая жидкость будет оставаться полностью внутри узла максимальное количество циклов, ведь ей просто некуда деваться через закрытый тип строения.

Система охлаждения включает радиатор. Его задача — быстрое интенсивное охлаждение. Различные типы Камазов также оснащены различными радиаторами. Например, модель 740 имеет трубчато-пластичный тип, основными составляющими которого являются сердцевины верхних, нижних бачков. Сердцевинами считаются ряды отдельных трубок с поперечными горизонтальными пластинами, придающими радиатору жесткость, увеличивающими поверхность охлаждения. Трубки соединяют бачки между собой. Нижний бачок соединен прорезиненным плотным шлангом с полостью охлаждения двигателя, нижний оснащен краном впуска охлаждающей жидкости, патрубков, соединяющим водяной насос. Заполнение радиатора осуществляется только путем заполнения расширительного бачка, ведь в Камазах отсутствует заливная горловина. Бачок расположен с правой стороны двигателя, при нагреве жидкости внутри бачка компенсируется ее количество, поэтому при грамотной работе нагруженного узла нехватка жидкости совершенно невозможна. Сам бачок оснащен двумя горловинами, через которые вставляется паровоздушный клапан, либо происходит заполнение рабочей жидкостью.

Еще одна деталь охладительного механизма — жалюзи. Они регулируют степень напора воздушных потоков, проходящих через радиатор. Устанавливаются непосредственно перед радиатором, имеют вид пластин — створок, прикрепленных шарнирами к каркасу.

Немаловажную роль играет рабочий водяной насос. Данный механизм создает принудительную циркуляцию охлаждающей жидкости. Большинство узлов высоконагруженных систем грузовых автомобилей работают либо поршневым способом, либо насосным. Перекачка давления создает движение компонентов, запускающее работу целых узлов. Чаще всего встречается насос центробежного типа. Устанавливается перед передней частью цилиндров, работает от шкива коленчатого вала через ремень. Составными частями водяного насоса являются вал, крыльчатка, подшипники, сальник, заключенные внутрь корпуса. Крыльчатка вращается, образуя центробежную силу. Данная сила заставляет охлаждающую жидкость подниматься из нижнего бачка внутрь корпуса насоса, после чего распределяется вдоль стенок. Стенки имеют отверстия, через которые жидкость попадает внутрь полости блока цилиндров.

Важным охладительным элементом, который установлен абсолютно на всех моделях Камазов, является вентилятор. Некоторые модели имеют два типа вентилятора: большой, малый. Эта многоступенчатая развязка организована таким образом, что при нагреве запускается сначала малый вентилятор, если работы малых оборотов недостаточно, через некоторое время запускается большой вентилятор, завершая процесс охлаждения. Вентиляторы усиливают потоки воздуха, проходящие через их сердцевину, создавая при правильном крутящем моменте нужный температурный коэффициент. Строение вентилятора очень простое. Крыльчатка имеет пять лопастей, которые держатся на ступице. Благодаря более тонкому диаметру ступицы, лопасти могут свободно вращаться. Привод осуществляется гидромуфтой под управлением электрических автоматов.

Гидромуфта передает крутящий момент, подаваемый коленчатым валом. Кроме того, гидромуфта гасит колебания нагрузок, возникающие при резком изменении частоты вращения коленчатого вала. Иными словами, большая скорость создает большее вращение, соответственно, уровень нагрева увеличивается. При увеличении нагрева, гасящие нагрев моменты также будут становиться больше. Именно поэтому чем больше скорость (частота вращения коленчатого вала), тем интенсивнее работает гидромуфта. Ведущая часть состоит из ведущего вала, к которому крепится кожух ведущего колеса, шкива. Ведомая часть вращается автономно на двух шариковых подшипниках, состоит из ведомого колеса, вала ведомого колеса, ступицы вентилятора. Вокруг гидромуфты устанавливается уплотнительное кольцо — две резиновые манжеты.

Работа вентилятора зафиксирована тремя режимами, зависимо от положения крана включения. Первый режим — автоматический. Данный тип возникает при температурном коэффициенте около девяноста градусов — тип положения группы «В». Отключенный вентилятор заставляет кран переключаться в положение «О». Третий тип — постоянная работа вентилятора. Постоянная работа допускается только на кратковременный срок, иначе ресурс жизнеспособности вентилятора резко сокращается. Именно поэтому не рекомендуется постоянно держать мотор на высоких оборотах. При установлении высоких оборотов, вентилятор будет постоянно включен, ведь ему необходимо поддерживать более низкую температуру, чем дает высоконагруженный мотор. Внутри корпуса самого включателя вентилятора расположились термосиловой элемент, золотник, возвратная пружина. При повышении температуры до девяносто пяти градусов, шток термосилового элемента толкает золотник, масло уровня смазки двигателя перемещается внутрь полости гидромуфты. Центробежная сила отбрасывает масло к вращающемуся ведущему колесу, ударяет о лопатки ведомого колеса. Сливается масло в поддон картера. При более низкой температуре, менее девяноста градусов, возвратная пружина отжимает золотник, доступ масла перекрывается, вентилятор отключается. Автоматическая муфта включения вентилятора помогает поддерживать оптимальный температурный режим двигателя, попутно снижая мощность двигателя, включая более экономичный режим работы. Иными словами, система охлаждения напрямую контролирует экономичность работы высоконагруженных узлов грузовика, обеспечивая наиболее рациональный уровень работы.

Термостат стоит немного особняком среди остальных охладительных узлов. Он автоматически регулирует температуру охлаждающей жидкости, ускоряя момент пуска двигателя. Камазы имеют термостат твердого наполнения. Составные части данного термостата включают медный баллон, внутри которого специальная масса (медный порошок плюс церезин — нефтяной воск). Баллон автономно закрыт крышкой, уплотненной резиновой диафрагмой со штоком. Шток имеет серьгу, закрепленную на клапане отдельной осью. Важной особенностью термостата является наличие датчика измерения температуры. Она находится рядом с датчиком сигнализатора аварийного перегрева. Обе запчасти имеют примерно одинаковую функцию, однако датчик температуры — самый важный адаптер возможного перегрева мотора. Путем определенной системы сигналов, он подает информацию центральному электронному блоку управления, который принимает соответствующие ситуации меры.

Клапан термостата устанавливается в две прорези, находящиеся в верхней части корпуса. Непрогретая масса баллона двигателя имеет твердое состояние, клапан термостата имеет закрытое положение под воздействием спиралевидной пружины. Прогревая двигатель, масса баллона начинает плавиться, объем массы увеличивается, открывая клапан путем воздействия диафрагмы и штока. Полное открытие достигается при температуре около девяноста пяти градусов, когда масса наполнителя расширится.

Расположение, устройство

Новые модификации автомобилей Камаз стали оснащаться более мощными двигателями, способными работать на предельных нагрузках. Большинство нагрузок определяются именно спецификой работы грузовиков. Например, дальномеры возят зачастую грузы, превышающие допустимые тоннажные нормы, негабариты перетаскивают грузы вообще несоразмерные объемам тягача, самосвалы испытывают большие нагрузки ввиду сложной местности, в которой приходится работать. Данные особенности эксплуатации привели конструкторов к мысли, что система охлаждения, которая устанавливалась на тягачи раньше, не способна справляться с современными условиями эксплуатации, поэтому помимо прочих условий реновации модельного ряда, данный узел также претерпел ряд изменений. Объем антифриза стал больше, поэтому понадобилось два термостата, чтобы контролировать уровень нагрева. Они объединены единым корпусом, размещенным на передней стенке правого блока цилиндров. Данное расположение является наиболее корректным, ведь антифриз подается слева направо.

Поменять термостат вполне можно самостоятельно. Перед заменой придется осуществить ряд сопутствующих демонтажных работ. Снимается ремень генератора, ослабляются фиксирующие болты, механизм отводится немного всторону. Демонтируются хомуты, со штуцера стаскивается гофра, только после этого можно сливать антифриз. Затем извлекается коробка термостатов. Чтобы их заменить, необходимо снять крышку. После замены неисправных блоков обязательно меняется сальник, закрывается коробка, фиксируется болтами.

Наличие двух термостатов помимо усиления охладительной функции можно сопрячь со строением самого мотора. V-образная головка блока двигателя имеет две головки блока цилиндров.

Возможные неисправности

Любая система имеет свои слабые места, которые необходимо проверять. Если вовремя диагностировать небольшую поломку, можно избежать дальнейших больших проблем. Большинство неисправностей водитель может визуально определить самостоятельно.

  • Течь антифриза. Данный тип неисправности настолько заметен, что главная задача водителя — чаще заглядывать под капот. Выражаться неисправность будет подтеками, пятнами соответственно цвету ОЖ. Течь возможна ввиду нецелостности бачка, либо перелива. Самое уязвимое место — соединение патрубков. Течь также может происходить из-за разрушения (износа) резиновых шлангов. Поэтому слабым местом считаются именно патрубки. Для устранения течи нужно тщательно проверить затянуты ли все фиксирующие болты, провести опрессовку.
  • Перегрев ОЖ — комплексная проблема плохой работы всего узла. Достигая более девяносто пяти градусов, антифриз будет закипать, поэтому нужно лучше отслеживать температуру.
  • Переохлаждение аналогично перегреву нарушает целостность работы группы механизмов. Слишком низкая температура мешает корректному запуску мотора. Работая «на холодную», двигатель берет больше холостого хода, некоторые водители называют данную проблему «хапнуть воздуха», иными словами, система перекачки воздушных масс внутри блоков также начинает барахлить. Важный момент — в каком положении заклинивает клапан. Если положение «О» — открытое, значит ОЖ будет «гулять» по большому кругу через радиатор, мешая непрогретому мотору прогреваться.
  • Самая серьезная проблема — попадание ОЖ внутрь масляной системы.

Система охлаждения всегда должна быть герметичной. Визуальный осмотр не сможет помочь выявить места «фона», поэтому лучше запастись манометром, насосом для создания давления. Опрессовка проводится путем подачи насосом давления на верхний вход радиатора, после чего двигатель запускается, показания сверяются манометром. Если стрелка остается неизменной, значит давление внутри хорошее, щелей нет. Если стрелка начинает опускаться, остается найти проблемное место, которое потом можно опрессовать насосом давления.

Замена ОЖ производится если бачок сильно загрязнился, либо изменилась консистенция и охлаждающие свойства потеряны. Емкость долива Камаза составляет 25 литров.

Во-первых, сливается старый антифриз. Открываем нижний кран радиатора, сливной кран теплообменника системы подогрева, трубы подвода жидкости системы отопления кабины. Откручиваем пробку расширительного бачка. После слива ОЖ, все краны обратно закрываются, потому что налив происходит через расширительный бачок. Новый антифриз следует выбирать исходя из времени года, условий эксплуатации, рекомендаций завода изготовителя. Современные отечественные антифризы прекрасно подходят для Камазов, имея необходимые стандарты качества.

Если произошло просто незначительное загрязнение пылью, систему можно промыть обычной водой. Для этого старую жидкость сливаем, вместо нее заливаем воду, запускаем двигатель, прогревая на холостых оборотах. После этого сливаем воду, повторяя цикл до полной очистки. При сильных загрязнениях лучше использовать специальные промывки. Некоторые можно добавлять прямо в имеющийся антифриз, однако наилучшим образом промывают систему промывки, перед которыми ОЖ полностью сливается.

В этой статье

  • Принцип работы
  • Расположение, устройство
  • Возможные неисправности

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *