Как подобрать конденсатор по напряжению
Перейти к содержимому

Как подобрать конденсатор по напряжению

  • автор:

Про буферные конденсаторы

Данная статья — что-то типа небольшого ликбеза, на который меня сподвигла недавняя статья на Хабре, про буферизацию источников питания.

Очень часто разработчикам приходится иметь дело с нестабильными или пульсирующими источниками питания, либо с пульсирующим потреблением. Соответственно, это приводит к провалам и броскам напряжения, вплоть до того, что устройством становится невозможно пользоваться, или оно вообще выходит из строя. Первое, что приходит в голову в таких случаях — поставить буферный конденсатор. Но для того, чтобы этот конденсатор реально помог — необходимо его правильно выбрать. Рассмотрим простейший пример — пропадание питания, которое устройство должно пережить без сбоев.

Прежде всего — в конденсаторе в принципе должно быть запасено достаточно энергии для того, чтобы обеспечить ей устройство на время пропадания основного питания. Допустим, мы питаемся от 12В, устройство потребляет мощность 20 Вт, допустимое минимальное рабочее напряжение — 9В. И пусть допустимое пропадание напряжения составляет 20 мсек. Для того, чтобы устройство протянуло на буферных конденсаторах это время, в них нужно запасти 0,4 Дж (считаем по формуле E = P*t, то есть, энергия есть произведение мощности на время). И после того, как из конденсатора потребитель вытянет эти 0,4Дж, в них должно остаться достаточно энергии, чтобы напряжение не опустилось ниже 9В.

Формула, по которой рассчитывается энергия, запасённая в конденсаторе, выглядит следующим образом: E=U^2 * С / 2. Необходимая дельта энергии нам известна, рабочее и минимальное напряжение — тоже, поэтому можно посчитать необходимую ёмкость. Подставляем наши значения, и получаем (12^2 * C/2) — (9^2 * C/2) = 0.4. Выражая отсюда C, получаем ёмкость в 12.5 тысяч мкФ. Ближайший сверху номинал — 15 тысяч мкФ. Учитывая требования по напряжению и ассортимент производителей — нам понадобится конденсатор 15000 мкФ 16В (а лучше — 25В). Это довольно большой по своим габаритам конденсатор (примерно с большой палец взрослого человека)

Ещё один момент, на который стоит обратить внимание — это способность конденсатора выдерживать импульсные нагрузки. Конденсатор может иметь огромную ёмкость, но не иметь возможности быстро её отдать. У конденсаторов есть такая характеристика, как ESR, «эффективное последовательное сопротивление». Так, например, у ионисторов может быть огромная ёмкость, измеряемая единицами фарад (ну, или миллионами микрофарад, если так привычнее), но из-за высокого ESR быстро забрать с них весь этот заряд невозможно, а любая попытка забрать большой ток будет приводить к тому, что заметная часть заряда превратится в тепло, нагревающее сам конденсатор.

Вернёмся к примеру выше. Допустим, у нас провал напряжения не 20 мсек, а 1 мсек, но потребляемая мощность не 20 Вт, а 400. То есть, нам надо обеспечить те же самые 0.4Дж энергии. Если считать по ёмкости, то конденсатор нужен тот же самый, но типичный ESR подобного одиночного электролита — десятки миллиОм. Попытка забрать с него ток в 30-40 ампер приведёт к тому, что напряжение на выводах конденсатора упадёт на 1-2 вольта, а примерно 10-15% (или даже больше) накопленной в нём энергии рассеется в тепло. В конечном итоге напряжение просядет ниже допустимого заметно раньше, чем предполагалось. В этом случае необходимо ставить несколько конденсаторов параллельно, причём стараться выбирать lowESR-конденсаторы. Это потребует ещё больше места на плате и внутри устройства в целом.

В целом, у конденсаторов ещё довольно много различных нюансов, но, как правило, уже того, что описано выше — достаточно, чтобы поставить крест на идее поставить буферный конденсатор на вход мощного потребителя

Как рассчитать и подобрать гасящий конденсатор

В самом начале темы, относительно подбора гасящего конденсатора, рассмотрим цепь, состоящую из резистора и конденсатора, последовательно подключенных к сети. Полное сопротивление такой цепи будет равно:

Эффективная величина тока, соответственно, находится по закону Ома, напряжение сети делить на полное сопротивление цепи:

В результате для тока нагрузки и входного и выходного напряжений получим следующее соотношение:

Эффективная величина тока

А если напряжение на выходе достаточно мало, то мы имеем право считать эффективное значение тока приблизительно равным:

Эффективное значение тока

Однако давайте рассмотрим с практической точки зрения вопрос подбора гасящего конденсатора для включения в сеть переменного тока нагрузки, рассчитанной на напряжение меньшее стандартного сетевого.

Допустим, у нас есть лампа накаливания мощностью 100 Вт, рассчитанная на напряжение 36 вольт, и нам по какой-то невероятной причине необходимо запитать ее от бытовой сети 220 вольт. Лампе необходим эффективный ток, равный:

Эффективный ток 2,77 А

Тогда емкость необходимого гасящего конденсатора окажется равна:

Емкость необходимого гасящего конденсатора

Имея такой конденсатор, мы обретаем надежду получить нормальное свечение лампы, рассчитываем, что она по крайней мере не перегорит. Такой подход, когда мы исходим из эффективного значения тока, приемлем для активных нагрузок, таких как лампа или обогреватель.

Схема с конденсатором

Но что делать, если нагрузка нелинейна и включена через диодный мост? Допустим, необходимо зарядить свинцово-кислотный аккумулятор. Что тогда? Тогда зарядный ток окажется для батареи пульсирующим, и его значение будет меньше эффективного значения:

Определение тока

Иногда радиолюбителю может быть полезным источник питания, в котором гасящий конденсатор включен последовательно с диодным мостом, на выходе которого имеется в свою очередь конденсатор фильтра значительной емкости, к которому присоединена нагрузка постоянного тока. Получается своеобразный бестрансформаторный источник питания с конденсатором вместо понижающего трансформатора:

Бестрансформаторный источник питания с конденсатором вместо понижающего трансформатора

Здесь нагрузка в целом будет нелинейной, а ток станет уже далеко не синусоидальным, и вести расчеты необходимо будет несколько иначе. Дело в том, что сглаживающий конденсатор с диодным мостом и нагрузкой внешне проявят себя как симметричный стабилитрон, ведь пульсации при значительной емкости фильтра станут пренебрежимо малыми.

Когда напряжение на конденсаторе будет меньше какого-то значения — мост будет закрыт, а если выше — ток пойдет, но напряжение на выходе моста расти не будет. Рассмотрим процесс более подробно с графиками:

Графики процесса

В момент времени t1 напряжение сети достигло амплитуды, конденсатор C1 также заряжен в этот момент до максимально возможного значения минус падение напряжения на мосте, которое будет равно приблизительно выходному напряжению. Ток через конденсатор C1 равен в этот момент нулю. Далее напряжение в сети стало уменьшаться, напряжение на мосте — тоже, а на конденсаторе C1 оно пока не изменяется, да и ток через конденсатор C1 пока что нулевой.

Далее напряжение на мосте меняет знак, стремясь уменьшиться до минус Uвх, и в тот момент через конденсатор C1 и через диодный мост устремляется ток. Далее напряжение на выходе моста не меняется, а ток в последовательной цепочке зависит от скорости изменения питающего напряжения, словно к сети подключен только конденсатор C1.

По достижении сетевой синусоидой противоположной амплитуды, ток через C1 опять становится равным нулю и процесс пойдет по кругу, повторяясь каждые пол периода. Очевидно, что ток течет через диодный мост только в промежутке между t2 и t3, и величину среднего тока можно вычислить, определив площадь закрашенной фигуры под синусоидой, которая будет равна:

Определение величины среднего тока

Если выходное напряжение схемы достаточно мало, то данная формула приближается к полученной ранее. Если же выходной ток положить равным нулю, то получим:

Выходное напряжение схемы

То есть при обрыве нагрузки выходное напряжение станет равно амплитуде сетевого. Значит следует применять такие компоненты в схеме, чтобы каждый из них выдержал бы амплитуду напряжения питания.

Кстати, при снижении тока нагрузки на 10%, выражение в скобках уменьшится на 10%, то есть напряжение на выходе увеличится примерно на 30 вольт, если изначально имеем дело, скажем, с 220 вольтами на входе и с 10 вольтами на выходе. Таким образом, использование стабилитрона параллельно нагрузке строго обязательно.

Схема с конденсаторами

А что если выпрямитель однополупериодный? Тогда ток необходимо рассчитывать по такой формуле:

Средний ток

При небольших значениях выходного напряжения ток нагрузки станет вдвое меньшим, чем при выпрямлении полным мостом. А напряжение на выходе без нагрузки окажется вдвое большим, так как здесь мы имеем дело с удвоителем напряжения.

Итак, источник питания с гасящим конденсатором рассчитывается в следующем порядке:

  • Первым делом выбирают, каким будет выходное напряжение.
  • Затем определяют максимальный и минимальный токи нагрузки.
  • Далее определяют максимум и минимум напряжения питания.
  • Если ток нагрузки предполагается непостоянный, стабилитрон параллельно нагрузке обязателен!
  • Наконец, вычисляют емкость гасящего конденсатора.

Для схемы с двухполупериодным выпрямлением, для сетевой частоты 50 Гц, емкость находится по следующей формуле:

Емкость конденсатора

Полученный по формуле результат округляют в сторону емкости большего номинала (желательно не более 10%).

Следующим шагом находят ток стабилизации стабилитрона для максимального напряжения питания и минимального тока потребления:

Ток стабилизации стабилитрона

Для однополупериодной схемы выпрямления гасящий конденсатор и максимальный ток стабилитрона вычисляют по следующим формулам:

Емкость конденсатора и максимальный ток стабилитрона

Выбирая гасящий конденсатор, лучше ориентироваться на пленочные и металлобумажные конденсаторы. Конденсаторы пленочные небольшой емкости — до 2,2 мкф на рабочее напряжение от 250 вольт хорошо работают в данных схемах при питании от сети 220 вольт. Если же вам нужна большая емкость (более 10 мкф) — лучше выбрать конденсатор на рабочее напряжение от 500 вольт.

  • Как выбрать источник бесперебойного питания (ИБП) для компьютера
  • Делитель напряжения на резисторах, конденсаторах и индуктивностях
  • Как проверить светодиод

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Делимся опытом, Практическая электроника

Подписывайтесь на наш канал в Telegram: Домашняя электрика

Поделитесь этой статьей с друзьями:

Тема: Выбор електролитических конденсаторов по напряжению

V R P вне форума

По умолчаниюВыбор електролитических конденсаторов по напряжению

Раньше считал, что нужно выбирать електролиты с хорошим запасом. Но недавно поговорил с одним преподавателем, и он обьяснил, что чем ближе напряжение на електролите к значению его номинального напряжения, тем лучше и дольше он будет работать. Принцип в том, что слой диелектрика в електролите зависит от напряжения, чем оно меньше — тем меньше и этот слой, соответственно выше ток утечки и вероятность пробоя (большая часть случаев выхода електролитов из строя именно из-за использования на пониженном напряжении). Что вы об этом думаете?
ЗЫ: Сейчас надо купить електролиты для бп +-50В, и не знаю рискнуть взять на 50 В (Samsung) или с запасом на 63.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Лучше ничего не делать, чем делать как попало.

16.11.2006, 04:26 #2

Andrew Gridlikov вне форума

Частый гость Регистрация 06.06.2005 Сообщений 245

По умолчаниюRe: Выбор електролитических конденсаторов по напряжению

Обычно выбирается следующий номинал вверх. Но к танталу, например, это не относится — там надо вдвое. Выбирать впритык — дурной тон.

16.11.2006, 12:17 #3

Alex вне форума

Не хочу! Регистрация 20.03.2003 Адрес Worldwide Возраст 61 Сообщений 35,907

По умолчаниюRe: Выбор електролитических конденсаторов по напряжению

ЦитатаСообщение от V R P Посмотреть сообщение

Что вы об этом думаете?

Бред.
Срок службы элеткролитов зависит не от запаса напряжения, а от риппла тока через конденсатор и температуры конденсатора (что актуально для силовых цепей). Разумеется, при непревышении напряжения, которое должно быть не больше 90-95% номинального в установившемся режиме. При переходном процессе — допускается преышение номинального на 5-10% (зависит от типа конденсатора, для некоторых и 15-20% можно).

Поэтому в БП на 50в ставить 50В не рекомендую, ставь на 63в.
Кроме всгео прочего, есть ведь еще допуски на отклонение напряжения сети от номинального.

«Замполит, чайку?»(с)»Охота за Красным Октябрем».
«Ну что, можете меняться обратно.»(с)типа анек.
Вопросы — в личку, е-мейл, скайп.

16.11.2006, 15:18 #4

V R P вне форума

Старый знакомый
Автор темы
Регистрация 21.04.2006 Адрес Киев Возраст 39 Сообщений 812

По умолчаниюRe: Выбор електролитических конденсаторов по напряжению

Ну 50 это уже с допуском, вообще 45.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —
Лучше ничего не делать, чем делать как попало.

16.11.2006, 16:38 #5

  • Просмотр профиля
  • Сообщения форума
  • Домашняя страница
  • Созданные темы

Костя Мусатов вне форума

Мимо проходил Регистрация 05.03.2004 Адрес Москва Возраст 57 Сообщений 5,529

По умолчаниюRe: Выбор електролитических конденсаторов по напряжению

Срок службы конденсаторов больше всего зависит от температуры. Температура , кроме внешней, определяется рабочими токами. А вот утечка и вероятность пробоя зависят от напряжения. Низкое напряжение способствует изтоньшению слоя оксида аллюминия и вероятность пробоя растет. Использование при высоких напряжениях так же способствует вероятности пробоя, особенно при прогреве. При старте у многих БП есть импульс превышения напряжения. У многих конденсаторов лимитируется такое временный скачек напряжения. У большинства 50 вольтовых это напряжение от 55 до 65В. Например у Jamicon HS 50V оно равно 63В.
По практике, если не бывает сильных превышений по напряжению, оптимально использовать на 70-85% от номинального рабочего напряжения конденсатора.

16.11.2006, 16:43 #6

Alex вне форума

Не хочу! Регистрация 20.03.2003 Адрес Worldwide Возраст 61 Сообщений 35,907

По умолчаниюRe: Выбор електролитических конденсаторов по напряжению

ЦитатаСообщение от V R P Посмотреть сообщение

Ну 50 это уже с допуском, вообще 45.
Тем более ставь на 63.

«Замполит, чайку?»(с)»Охота за Красным Октябрем».
«Ну что, можете меняться обратно.»(с)типа анек.
Вопросы — в личку, е-мейл, скайп.

Как подобрать конденсатор

Среди всего разнообразия радиоэлементов, используемых в схемотехнике, немаловажную и специфическую роль играют конденсаторы. Поскольку конденсаторы применяются в самых разнообразных областях радиотехники (от микропроцессорной техники до силовых установок), они имеют ряд отличительных особенностей и характеристик.

Внешний вид конденсаторов

Внешний вид конденсаторов

Свойства и параметры конденсаторов

Конденсатор представляет собой систему из двух изолированных друг от друга проводников. При подключении источника питания к конденсатору на одной его пластине накапливается положительный заряд, создающий электрическое поле с напряженностью +Е, а на второй – отрицательный заряд, формирующий электрическое поле с напряженностью -Е. Величины этих зарядов одинаковые, но противоположны по знаку. Способность конденсатора накапливать заряд называется электрической емкостью.

Величина электрической емкости прямо пропорциональна заряду одного из проводников и обратно пропорциональна разности потенциалов или напряжению между проводниками:

Поскольку каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого равен:

  • Е – напряженность поля;
  • σ – поверхностная плотность заряда;
  • ε0 – электрическая постоянная;
  • ε – диэлектрическая проницаемость диэлектрика.

соответственно, объединив оба выражения, получается, что емкость плоского конденсатора прямо пропорциональна площади пластин конденсатора, диэлектрической проницаемости диэлектрика и обратно пропорциональна расстоянию между пластинами:

  • S – площадь обкладки конденсатора;
  • d – расстояние между обкладками, или толщина диэлектрика.

Силовые линии электрического поля конденсатора

Силовые линии электрического поля конденсатора

По своему исполнению конденсаторы подразделяются на:

  1. Вакуумные конденсаторы – в качестве диэлектрика выступает вакуум;
  2. Конденсаторы с газообразным диэлектриком;
  3. Конденсаторы с жидким диэлектриком;
  4. Конденсаторы с твердым органическим диэлектриком. В качестве такого диэлектрика выступают бумага, металлобумага, пленочный и бумажнопленочный диэлектрик и тонкослойный диэлектрик из органических синтетических пленок;
  5. Электролитические и оксидно-полупроводниковые конденсаторы. Диэлектриком в них выступает оксидный слой, являющийся анодом. Второй обкладкой, или катодом, выступают либо электролит – в электролитических конденсаторах, либо слой полупроводника – в оксидно-полупроводниковых конденсаторах, нанесенных непосредственно на оксидный слой. В зависимости от типа конденсатора, анод изготавливается из алюминиевой, ниобиевой или танталовой фольги.

По возможности изменения емкости конденсаторы подразделяются на:

  • Постоянные – емкость не меняется на всем сроке службы;
  • Переменные – допускается изменение емкости в процессе функционирования;
  • Подстроечные – емкость меняется разово или с некоторой периодичностью.

К основным параметрам конденсаторов относятся:

  1. Электрическая или номинальная емкость конденсаторов;
  2. Удельная емкость конденсаторов – представляет собой отношение номинальной емкости к объему или массе диэлектрика. Максимальное значение достигается при минимальной толщине диэлектрика, хотя при этом уменьшается напряжение пробоя;
  3. Номинальное напряжение конденсаторов – представляет собой такое напряжение, при котором элемент будет работать с сохранением своих параметров в течение всего срока службы;
  4. Полярность конденсаторов. Электролитические конденсаторы, ввиду своих конструктивных особенностей, функционируют только при корректной полярности напряжения. При противоположном подключении диэлектрик разрушается, и конденсатор выходит из строя.

Сокращенное обозначение конденсаторов:

  • К – постоянный;
  • КТ – подстроечный;
  • КП – переменной емкости;
  • КС – конденсаторные сборки;
  • КМ – керамический монолитный;
  • 10 – керамический, до 1600В;
  • 15 – керамический, от 1600В;
  • 20 – кварцевый;
  • 21 – стеклянный;
  • 22 – стеклокерамический;
  • 23 – стеклоэмалевый;
  • 26 – тонкопленочный с неорганическим диэлектриком;
  • 31 – слюдяной;
  • 40 – бумажный и фольговый;
  • 50 – оксидный, электролитический;
  • 60 – воздушный;
  • 61 – вакуумный;
  • 70 – полистирольный диэлектрик.

Принципы подбора конденсаторов

Сталкиваясь с проблемой, как подобрать конденсатор, нужно запомнить несколько правил, которые позволят устройству работать долгое время с заданными характеристиками.

Для замены вышедшего из строя конденсатора достаточно переписать его маркировку и характеристики. Далее остается приобрести компонент, подбирая его в магазине, и заменить бракованный в схеме.

Многие устройства, используемые человеком, требуют постоянного электрического питания. Не возникает проблем, если под рукой имеется трансформаторный блок питания. Однако и понижающий трансформатор имеет свой основной недостаток, заключающийся в больших размерах и весе, он требует для себя отдельного места. Решить эту проблему можно, благодаря бестрансформаторному блоку питания, изготовленному на основе гасящего конденсатора.

Схема простого бестрансформаторного блока питания

Схема простого бестрансформаторного блока питания

Согласно схеме на рис. выше, во входном контуре размещен гасящий конденсатор С1, на котором глушится входное напряжение. Поскольку на входе устройства ток переменный, и конденсатор непрерывно перезаряжается, то на его выходе присутствует некий ток. Конденсатор большей емкости обуславливает больший ток. Соответственно, расчет гасящего конденсатора начинается с указания нагрузочного тока и напряжения.

Емкость гасящего или балластного конденсатора определяется по формуле:

C=Iэф/ 2πƒ√U2вх-U2вых, где:

  • С – емкость гасящего конденсатора (Ф);
  • Iэф – выходной ток блока питания;
  • ƒ – частота тока сети;
  • Uвх – входное напряжение;
  • Uвых – выходное напряжение.

При подборе конденсатора дополнительно необходимо обратить внимание на такие его параметры:

  1. Напряжение конденсатора;
  2. Тип конденсатора.

При питающем напряжении 220В нужно поставить конденсатор, рассчитанный на 400В. Однако надежнее использовать конденсатор с большей величиной напряжения. Но можно ли поставить его в схему или нет, определяет сам размер устройства, ввиду габаритов конденсатора. Максимально надежными по типу являются пленочные плоские конденсаторы, полиэтилентерефталатные металлизированные, МГБО, комбинированные и их аналоги.

Использование гасящих конденсаторов вместо трансформаторов максимально упростило создание компактных и надежных блоков питания. Рассчитать емкости и подобрать балластный конденсатор не составит большого труда даже для начинающих радиолюбителей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *