Что такое скольжение асинхронного двигателя
Перейти к содержимому

Что такое скольжение асинхронного двигателя

  • автор:

Скольжение асинхронного двигателя

В результате взаимодействия магнитного поля с токами в роторе асинхронного двигателя создается вращающий электромагнитный момент, стремящийся уравнять скорость вращения магнитного поля статора и ротора.

Разность скоростей вращения магнитного поля статора и ротора асинхронного двигателя характеризуется величиной скольжения s = (n 1 — n 2 ) / n 1, где n 1 — синхронная скорость вращения поля, об/мин, n2 — скорость вращения ротора асинхронного двигателя, об/мин. При работе с номинальной нагрузкой скольжение обычно мало, так для электродвигателя, например, с n 1 = 1500 об/мин, n2 = 1 460 об/мин, скольжение равно: s = ((1500 — 1460) / 1500) х 100 = 2,7%

Двигатели насосной станции

Асинхронный двигатель не может достичь синхронной скорости вращения даже три отсоединенном механизме, так как при ней проводники ротора не будут пересекаться магнитным полем, в них не будет наводиться ЭДС и не будет тока. Асинхронный момент при s = 0 будет равен нулю.

В начальный момент пуска в обмотках ротора протекает ток с частотой сети. По мере ускорения ротора частота тока в нем будет определяться скольжением асинхронного двигателя : f2 = s х f1, где f1 — частота тока, подводимого к статору.

Сопротивление ротора зависит от частоты тока в нем, причем чем больше частота, тем больше его индуктивное сопротивление. С увеличением индуктивного сопротивления ротора увеличивается сдвиг фаз между напряжением и током в обмотках статора.

При пуске асинхронных двигателей коэффициент мощности поэтому значительно ниже, чем при нормальной работе. Величина тока определяется эквивалентным значением сопротивления электродвигателя и приложенным напряжением.

Величина эквивалентного сопротивления асинхронного двигателя с изменением скольжения изменяется по сложному закону. При уменьшении скольжения в пределах 1 — 0,15 сопротивление увеличивается, как правило, не более чем в 1,5 раза, в пределах от 0,15 до s н ом в 5-7 раз по отношению к начальному значению при пуске.

Ток по величине изменяется обратно пропорционально изменению эквивалентного сопротивления Таким образом, при пуске до скольжения порядка 0,15 ток опадает незначительно, а в дальнейшем быстро уменьшается.

Момент вращения электродвигателя определяется величиной магнитного потока, током и угловым сдвигом между ЭДС и током в роторе. Каждая из этих величин в свою очередь зависит от скольжения, поэтому для исследования рабочих характеристик асинхронных двигателей устанавливается зависимость момента от скольжения и влияния на него подводимого напряжения и частоты.

Момент вращения может быть также определен по электромагнитной мощности на валу как отношение этой мощности к угловой скорости ротора. Величина момента пропорциональна квадрату напряжения и обратно пропорциональная квадрату частоты.

Скольжение асинхронного двигателя

Характерными значениями момента в зависимости от скольжения (или скорости) являются начальное значение момента (когда электродвигатель еще неподвижен), максимальное значение момента (и соответствующее ему сколь жение, называемое критическим) и минимальное значение момента в пределе скоростей от неподвижного состояния до номинальной .

З начения момента для номинального напряжения приводятся в каталогах для электрических машин. Знание минимального момента необходимо при расчете допустимости пуска или самозапуска механизма с полной нагрузкой механизма. Поэтому его значение для конкретных расчетов должно быть либо определено, либо получено от завода-поставщика.

Величина максимального значения момента определяется индуктивным сопротивлением рассеяния статора и ротора и не зависит от величины сопротивления ротора.

Зависимость тока и момента от скольжения

Зависимость тока и момента от скольжения

Критическое скольжение определяется отношением сопротивления ротора к эквивалентному сопротивлению (обусловлено активным сопротивлением статора и индуктивным сопротивлением рассеяния статора и ротора).

Увеличение только активного сопротивления ротора сопровождается увеличением критического скольжения и перемещением максимума момента в область более высоких скольжений (меньшей скорости вращения). Таким путем может быть достигнуто изменение характеристик моментов.

Изменение скольжения возможно увеличением сопротивления цени ротора или потока. Первый вариант осуществим только для асинхронных двигателей с фазным ротором (от S = 1 до S = Sном ) , но не экономичен. Второй вариант осуществим при изменении питающего напряжения, но только в сторону уменьшения. Диапазон регулирования мал, так как S возрастает, но одновременно уменьшается перегрузочная способность асинхронного двигателя. По экономичности оба варианта, примерно, равноценны.

В асинхронных двига т елях с фазным ротором изменение момента при различных скольжениях осуществляется с помощью сопротивления, вводимого в цепь обмотки ротора. В асинхронных двигателях с короткозамкнутым ротором изменение момента может быть достигнуто за счет применения двигателей с переменными параметрами или с помощью частотных преобразователей .

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Скольжение асинхронного двигателя

Скольжение асинхронного двигателя — относительная разность скоростей вращения ротора и магнитного потока, создаваемого обмотками статора двигателя переменного тока. Скольжение может измеряться в относительных единицах и в процентах.

s= (n_1-n)/n_1

,

n

где — скорость вращения ротора асинхронного двигателя

n_1

— скорость вращения магнитного потока, называется синхронной скоростью двигателя.

n_1=60*f/p

,

где f — частота сети переменного тока

p — число пар полюсов обмотки статора (число пар катушек на фазу).

Из последней формулы видно, что скорость вращения двигателя n практически определяется значением его синхронной скорости, а последняя при стандартной частоте 50 Гц зависит от числа пар полюсов: при одной паре полюсов — 3000 об/мин, при двух парах — 1500 об/мин, при трёх парах — 1000 об/мин и т. д.

Литература

  • Хомяков Н. М., Денисов В. В., Панов В. А. Электротехника и электрооборудование судов. — Ленинград: Издательство «Судостроение», 1971. — 368 с.

Как определить скольжение асинхронного двигателя в процессе наладки и эксплуатации

Если частота вращения электродвигателя значительно отличается от синхронной, ее измеряют тахометром или тахогенератором, который присоединяется непосредственно на валу электродвигателя, а скольжение двигателя определяют по формуле S = (n1 — n2) / n1 , где n1 = 60f /p – синхронная частота вращения; n2 – фактическая частота вращения.

Преимущества этого способа определения скольжения электродвигателя: быстрота измерений и возможность производить их как при неизменной, так и при изменяющейся частоте вращения. К недостаткам такого способа измерения можно отнести невысокую точность обычных тахометров (погрешность 1–8 %) и трудность их градуирования. Кроме того, тахометр не может применяться при испытании электродвигателей малой мощности, так как потери на трение внутри механизма тахометра представляют заметную нагрузку.

Для выполнения различных измерений ручной тахометр обычно снабжается комплектом сменных наконечников различной формы и назначения, надеваемых на конец валика (рис. 1). Из этих наконечников наиболее широко применяется резиновый конус, оправленный в металлический патрон. Все эти наконечники служат для соприкосновения с коническим углублением в торце вала электрической машины. Наконечник с резиновым центром используют при измерении больших частот, со стальным — для малых и средних.

Общий вид центробежного тахометра типа ИО-10 и тахогенератора: 1 – шкала; 2 – кнопка переключения; 3 – указатель пределов; 4 – циферблат

Рис. 1. Общий вид центробежного тахометра типа ИО-10 и тахогенератора: 1 – шкала; 2 – кнопка переключения; 3 – указатель пределов; 4 – циферблат

При наличии углубления по центру вала применяется удлинитель, который надевается на вал тахометра, а соответствующий наконечник – на удлинитель. При отсутствии или недостаточности центров пользуются шкивом, который прижимается боковой поверхностью (резиновым кольцом) к поверхности вращающегося вала.

В соответствии с конкретными условиями измерения выбирают приспособление (удлинитель наконечник). Перед началом измерения удаляют смазку, грязь, пыль из центра углубления или поверхности вала.

Для измерения частоты вращения электродвигателя следует предварительно установить на тахометре необходимый предел измерения. Если порядок измерения частоты неизвестен, то измерение следует начинать с самого высокого предела во избежание порчи тахометра.

Измерение следует производить кратковременно (3 – 5 с), осторожно прижимая наконечник тахометра к вращающемуся валу с небольшим нажимом так, чтобы ось вала тахометра совпадала с осью измеряемого вала или при пользовании шкивом была параллельной ей.

Как определить скольжение асинхронного двигателя в процессе наладки и эксплуатации

Если скольжение не превышает 5 %, частота вращения может быть измерена стробоскопическим методом с применением неоновой лампы.

На торце вала двигателя мелом наносят диаметральную черту. Во время работы двигателя ее освещают неоновой лампой, питаемой от сети той же частоты, что и двигатель. Наблюдатель видит на торце вала не черту, а звезду, медленно вращающуюся против направления вращения вала. Количество лучей звезды зависит от числа пар полюсов двигателя и от положения неоновой лампы. Если свет от обоих электродов лампы падает на торец вала, число лучей кажущейся звезды равно 2р. Если же торец вала с нанесенной меловой чертой освещается только одним электродом, число лучей кажущейся звезды равно числу пар полюсов.

За время t (обычно 30 с), измеряемое секундомером, подсчитывается количество лучей кажущейся звезды m, прошедших через вертикальное положение. Поскольку число лучей кажущейся звезды равно 2р, скольжение

где f1 – частота сети, питающей неоновую лампу.

Другой вариант стробоскопического метода заключается в следующем. На валу двигателя с торцовой стороны укрепляют один из дисков (рис. 2 ). Собирают схему (рис. 3 ). У двухполюсной машины на валу закрепляют диск, обозначенный как 2р = 2, и освещают его неоновой лампой с пятачковым электродом.

Изображение стробоскопических дисков в зависимости от количества пар полюсов АД

Рис. 2 . Изображение стробоскопических дисков в зависимости от количества пар полюсов асинхронного электродвигателя

Схема включения неоновой лампы для стробоскопического метода определения скольжения

Рис. 3 . Схема включения неоновой лампы для стробоскопического метода определения скольжения:1 – неоновая лампа, 2 – стробоскопический диск, 3 – индукционная катушка

Ротор вращается несинхронно и отстает от поля, так что виден диск, медленно вращающийся в сторону, противоположную вращению ротора. Если за время t мимо неподвижной точки (стрелки, укрепленной на подшипнике) проходит m черных секторов, значение скольжения определяется по выражению

Счет проходящих мимо неподвижной точки секторов следует начинать не с момента пуска секундомера, а со следующего прохождения метки.

Для получения резкости изображения на лампу следует подавать напряжение, кривая изменения которого показана на рис. 4 . Лампа зажигается в тот момент, когда напряжение на ее зажимах достигает значения, называемого порогом зажигания.

Рис. 4 . Схема включение неоновой лампы для получения острой формы кривой напряжения: 1 – неоновая лампа; 2 – реактивная катушка с сильно насыщенным магнитопроводом с индуктивным сопротивлением Х (падения напряжения на сопротивлениях R и Х примерно одинаковы)

Определение скольжения двигателя с помощью индукционной катушки. Этот метод основан на контроле частоты вращения потоков рассеивания ротора Фр (рис. 5 ), которые с частотой, пропорциональной скольжению, пересекают витки индукционной катушки.

Рис. 5. Схема измерения скольжения ротора асинхронного электродвигателя с помощью индукционной катушки

К выводам катушки подключают чувствительный милливольтметр (желательно с нулем посредине шкалы); катушку располагают у конца вала ротора. Поворачивая катушку в разные стороны, находят положение, при котором наблюдаются максимальные колебания стрелки прибора. По числу полных колебаний k за время t рассчитывают значение скольжения

Для расчета удобно отсчитать 50 полных колебаний и по секундомеру отметить время. Тогда: .

В качестве индукционной катушки можно использовать катушку реле или контактора постоянного тока, имеющую 10–20 тыс. витков (или намотать катушку с числом витков не менее 3000). Для усиления магнитного потока в катушку вставляют сердечник, набираемый из нескольких полос трансформаторной стали. Метод индукционной катушки весьма прост и пригоден для всех видов машин.

У асинхронных электродвигателей с фазным ротором помимо описанных выше способов скольжение может быть определено с помощью магнитоэлектрического амперметра, включаемого в одну из фаз ротора, а при наличии невыключаемого сопротивления в цепи ротора — с помощью вольтметра, присоединенного к кольцам ротора. Рекомендуется применять приборы с двусторонней шкалой. Скольжение асинхронного электродвигателя рассчитывается по числу полных колебаний стрелки прибора, так же как при использовании метода с индукционной катушкой.

Как определить скольжение асинхронного двигателя в процессе наладки и эксплуатации

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Что нужно знать о скольжении асинхронного двигателя

Одним из основных электромоторов в мире является асинхронный двигатель. Чтобы его использовать в качестве привода, надо понимать, как поведет себя одна из главных переменных характеристик при пуске, изменении нагрузки на валу, колебании электронапряжения и частоты. Этот параметр называется скольжением электродвигателя.

Использование асинхронных двигателей

Устройство и принцип работы

Двигатель переменного электротока, в котором скорость вращения ротора меньше скорости вращающегося электромагнитного поля статора, называется асинхронным.

Обмотки статора подключаются к сети синусоидального трехфазного электротока, после чего электромагнитный поток начинает вращаться и пересекает замкнутые токопроводящие витки подвижной части мотора. Под действием наведенной в них ЭДС возникает переменный электроток. Он создает свое магнитное поле, которое заставляет вращаться ротор с асинхронной скоростью следом за полем статора.

Схема асинхронного электромотора

Статор представляет собой набранный из изолированных листов электротехнической стали корпус, в который различным способом уложены обмотки возбуждения. Ротор тоже шихтуется из изолированных листов. Они имеют пазы, в которых закрепляются штыри короткозамкнутого ротора или укладывается фазная обмотка. На концах вала ротора расположены подшипники, вставленные в торцевые крышки статора.

Схема магнитопровода АД

Короткозамкнутый ротор (его также называют «беличьей клеткой») состоит из набора стержней из алюминия или меди. По торцам они закольцованы вместе. Это наиболее простая и распространенная конструкция АД.

Конструкция короткозамкнутого ротора

Мотор, ротор которого содержит 3-х фазную обмотку, называется фазным. Полноценные изолированные витки трех обмоток концами соединены вместе, а их начала выведены на контактные кольца. При помощи щеточного скользящего контакта катушки выведены на внешнее управление.

Фазный ротор

Что такое скольжение АД

Создание вращающегося магнитного поля (МП) в неподвижной части электрической машины происходит за счет разнесенных на 120 градусов по окружности корпуса витков 3-х катушек. Они образуют одну пару полюсов (p), на практике их может быть больше. Обмотки соединяются «треугольником» или «звездой». Запитываются они от трехфазной сети переменного электротока.

Электроток, сдвинутый по фазе на 120 градусов, протекая по размещенным по окружности виткам 3-х катушек, создает вращающееся МП с синхронной частотой:

Частота вращения МП статора

Вращающееся МП, пересекая набор замкнутых токопроводящих витков подвижной части машины, создает в них ЭДС. Образовавшаяся в замкнутых рамках ротора электродвижущая сила способствует возникновению переменного электротока, воспроизводящего свое вращающееся электромагнитное поле.

Подвижная часть машины начинает вращаться вслед за вращающимся полем со скоростью n2 (об/мин), стремясь засинхронизировать свое электромагнитное поле с вращающимся полем неподвижной части, то есть, достичь скорости n1 (об/мин). Величина разницы скоростей в относительных единицах или процентах называется коэффициентом скольжения (S):

Формула коэффициента скольжения

Асинхронная скорость n2 при нормальной эксплуатации электродвигателя всегда меньше синхронной скорости n1, поэтому скольжение асинхронного двигателя меньше единицы и ста процентов.

Суть коэффициента скольжения

Зависимость режимов работы мотора от скольжения

Для АД скольжение рассматривается:

  • В режиме холостого хода (ХХ);
  • при номинальном значении нагрузки;
  • генераторном применении;
  • критической нагрузке;
  • во время пуска.

Рабочие режимы АД

Асинхронная скорость n2 в режиме ХХ при отсутствии нагрузки на валу практически равна синхронной скорости вращения электромагнитного поля статора n1. Скольжение в этом случае будет не более 3% и даже в режиме идеального ХХ (если пренебречь трением в подшипниках), оно не будет нулевым.

При номинальном напряжении и нагрузке скольжение S находится в диапазоне 2–8% для большинства моторов. Номинальная скорость или скольжение указываются на шильдике асинхронного двигателя. По ним строится график механической характеристики.

В генераторном режиме скольжение может быть отрицательным, то есть, меньше 0. Ротор в этом случае вращается под действием механической силы навстречу вращающемуся электромагнитному полю статора.

С увеличением нагрузки на валу мотора увеличивается момент торможения, вследствие чего увеличивается и скольжение. При этом растет электроток, наводимый в роторе, наряду с моментом вращения. При небольших нагрузках между моментом и скольжением наблюдается прямо пропорциональная зависимость. Но рост скольжения способствует возрастанию активных потерь в роторе, снижающих наводимый электроток. По этой причине момент увеличивается с меньшей скоростью, чем скольжение, а при определенном значении последнего момент становится максимальным и начинает снижаться. Скольжение, соответствующее максимальному моменту, называется критическим.

При пуске мотора асинхронная скорость равняется нулю, скольжение — единице, электроток в двигателе максимальный, а значение момента вращения вала выше значения момента торможения нагрузки. С увеличением скорости вращения МП ротора скольжение уменьшается, а когда скорость достигает своего номинального значения, устанавливается нормальный режим.

Зависимость электротока и момента АД от скольжения

Из графика видно, что скольжение мотора меняется от 0 до 1. До того момента, пока не возникнет критическое скольжение, мотор работает устойчиво, а в промежутке от Sкр до 1 возникает неустойчивый режим, который зависит от характера и величины нагрузки на валу. Для управления в этом диапазоне применяют либо переключение «звезда-треугольник», либо фазный ротор, либо частотное регулирование.

Способы измерения

Измерение скольжения в двигателе должно осуществляться согласно требованиям ГОСТ 7217–89 с помощью амперметра постоянного тока, катушки индуктивности или стробоскопического эффекта.

Основная задача — подсчитать количество полных N отклонений стрелки от 0 за период времени T. После того, как нашли данный параметр, можно определить частоту электротока ротора:

Определение частоты электротока ротора

Затем по соотношению частоты электротока статора и ротора следует найти скольжение:

Определение скольжения с использованием частоты электротока

Косвенными методами при использовании электромагнитной катушки или стробоскопического эффекта определяют количество оборотов ротора К за период времени Т (сек). Затем вычисляется скольжение. Для этого используется формула:

Определение скольжения при использовании стробоскопического эффекта

При больших значениях скольжения для измерения применяются тахогенераторы или тахометры, установленные на валу двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *