Вкладыш коренной и шатунный чем отличаются
Перейти к содержимому

Вкладыш коренной и шатунный чем отличаются

  • автор:

Вкладыши и подшипиники

Комплект коренных и упорных подшипников

Коренные и шатунные вкладыши изготавливаются из высококачественных материалов. Это сплав олова и свинца. В качестве добавок также добавляют в состав никель и медь. Это позволяет улучшить эксплуатационные качества изделия и хорошую сопротивляемость динамическим нагрузкам.

Назначение

При реализации основной функции подшипника для двигателя особое значение имеет используемый вкладыш. Другое их название втулка. Благодаря этому конструктивному элементу удаётся наиболее оптимально принимать так называемую «осевую нагрузку», идущую от работающего вала. Способствует этому наличие заливки у вкладыша коренного подшипника, которая и играет свою роль в момент остановки или пуска механизма двигателя машины.

Эксплуатационные особенности

Решив купить вкладыши шатунные у нас, вы можете быть уверены в их высоком качестве и надёжности. Изготавливаются они исключительно по действующим ГОСТ.

Вне зависимости от типа модуля (опорный, опорный/упорный или шатунный) все они обладают рядом объективных преимуществ при использовании в механизмах машин и автомобилей:

  • простота и надёжность конструкции;
  • невосприимчивость к высоким нагрузкам;
  • отсутствие необходимости замены в течении длительного времени;
  • минимальный уровень шума в процессе работы.

Коренные и шатунные вкладыши двигателя вилочного погрузчика

В чем разница между коренными и шатунными вкладышами, основные поломки связанные с ними.

Коренные и шатунные вкладыши двигателя очень похожи между собой, как по внешнему виду, размеру и свойствам, так и по функциям, которые они выполняют в двигателе вилочного погрузчика.

Что такое шатунные и коренные вкладыши и в чем их функция

В двигателе погрузчика есть элемент, называемый коленчатым валом. Это высоконагруженный элемент, и конструкционно устанавливается он не на обычные, шариковые подшипники, а на подшипники скольжения.

Подшипники скольжения представляют собой металические пластины, покрытые специальным антифрикционным слоем.

Эти пластины и есть шатунные вкладыши. Они крепятся в специальных местах, называемых постелями. Необходимость крепления шатунных вкладышей обусловлена несколькими причинами.

Во-первых, на вкладыше имеется отверстие, которое предназначено для движения масла и должно быть совмещено с аналогичным отверстием в постелях.

Во-вторых, правильное крепление обеспечивает трение на поверхностях, специально для этого предназначенных.

В чем разница между коренными и шатунными вкладышами

А — коренной вкладыш

В — шатунный вкладыш

Разница между вкладышами в их расположении, первые находятся в том месте, где коленвал проходит в корпусе двигателя, шатунный же находится между шатуном и шейкой коленвала.

Причины замены шатунных и коренных вкладышей ДВС вилочного погрузчика

Основных причин, по которым владельцы вилочных погрузчиков должны заменить вкладыши, несколько.

Первая причина-естественный износ трущихся поверхностей, этот процесс неизбежен, так как коленчатый вал работает в условиях высоких температур при постоянных нагрузках.

Специальное покрытие изнашивается, что приводит к неправильной работе коленвала и ДВС.

Вторая причина-это проворачивание вкладышей, к этому приводит излишне густое масло с частичками металла, которое оказывает абразивное действие на поверхность вкладыша.

Часто, одной из причин, особенно у бывших в ремонте двигателей, является недостаточный натяг. Это следствие неправильного подбора и установки вкладыша неквалифицированными механиками. В процессе работы коленвала происходит проворот вкладыша, остановка мотора-финансовые потери владельца погрузчика в этом случае неизбежны.

Как правильно подобрать и установить вкладыш

Какой бы не была причина замены вкладыша, даже если повреждена только шейка, шлифовать и подгонять нужно полностью весь коленвал.

Будь в курсе, подпишись на нашу рассылку!

И узнавай первой о специальных предложениях и акциях!

Основной склад в Новосибирске

тел: 8 (800) 201-05-06 — бесплатный, +7 (383) 263-15-93
пн-пт 9:00-18:00

Вкладыши для двигателя – детали критические

Вкладыши для двигателя – детали критические

На первый взгляд вкладыши – это просто штамповка. Но впечатление обманчиво: подшипники скольжения представляют собой высокотехнологические изделия из сложного композитного материала, имеющие специфическую геометрию и точные размеры. И, что немаловажно – они являются критическими деталями двигателя, отказ которых ведет к его остановке и очень дорогому ремонту.

Функции подшипников

Вращающиеся компоненты двигателей внутреннего сгорания оборудованы подшипниками скольжения, которые выполняют разные функции:

• коренные вкладыши поддерживают коленчатый вал и обеспечивают его вращение. Устанавливаются в блоке цилиндров. Каждый вкладыш состоит из верхней и нижней половин. На внутренней поверхности верхней половины, как правило, есть канавка для смазки и отверстие для подачи масла.

• шатунные вкладыши обеспечивают вращение шейки шатуна, который, в свою очередь, вращает коленвал. Устанавливаются в нижней головке шатуна.

• упорные кольца предотвращают осевое движение вала. Часто упорные кольца являются частью одного из коренных вкладышей – такие комбинированные подшипники называются буртовыми или фланцевыми вкладышами.

• втулки верхней головки шатуна обеспечивают вращение поршневого пальца, соединяющего поршень с шатуном.

• вкладыши распредвала поддерживают распредвал и обеспечивают его вращение. Устанавливаются в верхней части головки блока цилиндров (или в блоке цилиндров – у двигателей с нижним расположением распредвала).

Биметаллические (а) и триметаллические подшипники со свинцовистым покрытием (б, в)

Подшипники скольжения смазываются моторным маслом, постоянно подающимся к их поверхности и обеспечивающим гидродинамический режим трения.

Непосредственный контакт между трущимися в гидродинамическом режиме поверхностями отсутствует – благодаря масляной пленке, которая образуется в сходящемся зазоре (масляном клине) между поверхностями подшипника и вала.

Условия работы подшипников скольжения

Масляная пленка предотвращает локальную концентрацию нагрузки. Однако при определенных условиях гидродинамический режим трения сменяется на смешанный. Это происходит, если имеются:

• недостаточный поток масла;

• низкая вязкость масла;

• перегрев масла, дополнительно снижающий его вязкость;

• высокая шероховатость поверхностей подшипника и вала;

• деформация и геометрические дефекты подшипника, его гнезда или вала.

В смешанном режиме трения возникает непосредственный физический контакт поверхностей, чередующийся с гидродинамическим трением. А это может привести к задирам, повышенному износу подшипника и даже к схватыванию с валом.

ДВС характеризуются циклическими нагрузками подшипников, об­условленными переменным давлением в цилиндрах и инерционными силами, вызванными движущимися частями. И эти циклические нагрузки на подшипник могут привести к его разрушению. Отсюда – высочайшие требования к материалам, из которого он производится.

Структура подшипников скольжения

Материалы подшипников скольжения

Материалы, из которых делают подшипники, должны обладать многими, иногда противоречивыми, свойствами.

• Усталостная прочность (максимальная нагрузка) – максимальная циклическая нагрузка, которую подшипник выдерживает в течение неограниченного числа циклов. Превышение этой нагрузки приводит к образованию усталостных трещин в материале.

• Сопротивление схватыванию (совместимость) – способность материала подшипника сопротивляться свариванию с материалом вала во время прямого физического контакта между ними.

• Износостойкость – способность материала подшипника сохранять свои размеры несмотря на присутствие абразивных частиц в масле, а также в условиях механического контакта с валом.

• Прирабатываемость – способность материала подшипника компенсировать небольшие геометрические дефекты вала и гнезда за счет незначительного локального износа или пластической деформации.

• Абсорбционная способность – способность материала подшипника захватывать мелкие чужеродные частицы, циркулирующие с маслом.

• Коррозионная стойкость – способность материала подшипника сопротивляться химическим воздействиям окисленных или загрязненных масел.

• Кавитационная стойкость – способность материала подшипника выдерживать ударные нагрузки, производимые схлопывающимися кавитационными пузырьками (пузырьки образуются в результате резкого падения давления в текущем масле).

Эксцентриситет подшипника скольжения

Соответственно длительная и надежная работа подшипника скольжения достигается соединением высокой прочности (усталостной прочности, износостойкости, кавитационной стойкости) с мягкостью (прирабатываемостью, сопротивлением схватыванию, абсорбционной способностью).

То есть материал должен быть одновременно и прочным, и мягким. Это звучит парадоксально, однако существующие подшипниковые материалы соединяют эти противоположные свойства – правда, с определенным компромиссом.

Для достижения этого компромисса используются композитные структуры, которые могут быть или слоистыми (мягкое покрытие, нанесенное на прочное основание) или дисперсными (мягкие частички, распределенные внутри прочной матрицы).

Биметаллические подшипники имеют стальное основание, обеспечивающее жесткость и натяг в тяжелых условиях повышенной температуры и циклических нагрузок.

Второй слой материала состоит из антифрикционного сплава. Его толщина относительно велика: она составляет около 0,3 мм. Толщина антифрикционного слоя – важная характеристика биметаллических подшипников, способных прирабатываться и приспосабливаться к относительно большим геометрическим дефектам. Биметаллический подшипник также обладает хорошей абсорбционной способностью, поглощая как мелкие, так и крупные включения в масле.

Обычно рабочий слой делают из алюминия, содержащего 6–20% олова в качестве твердого смазочного материала: именно олово обеспечивает антифрикционные свойства. Кроме этого, сплав часто содержит 2–4% кремния в виде мелких включений, распределенных в алюминии. Твердый кремний упрочняет сплав и обладает способностью полировать поверхность вала – поэтому его присутствие особенно важно при работе с валами из ковкого чугуна. Сплав может быть дополнительно упрочнен небольшими добавками меди, никеля, марганца, ванадия и других элементов.

Триметаллические подшипники, помимо стального основания, имеют промежуточный слой из медного сплава, содержащего 20–25% свинца в качестве твердой смазки и 2–5% олова для упрочнения меди.

Третий слой представляет собой покрытие на основе свинца, которое также содержит около 10% олова, повышающего коррозионную стойкость сплава и несколько процентов меди для упрочнения. Толщина покрытия составляет всего 12–20 мкм. Низкая толщина покрытия повышает его усталостную прочность, однако снижает антифрикционные свойства (прирабатываемость, абсорбционную способность, сопротивление схватыванию), особенно если мягкое покрытие было подверг­нуто износу. Между промежуточным слоем и свинцовистым покрытием наносится очень тонкий (1–2 мкм) слой никеля, служащий барьером, предотвращающим диффузию олова из покрытия в промежуточный слой.

Измерение высоты выступа стыка подшипника

Инновационные материалы для подшипников скольжения постоянно разрабатываются производителями подшипников. Это новые материалы, способные работать в тяжело нагруженных двигателях (дизельные двигатели с непосредственным впрыском топлива, двигатели с турбонаддувом), а также в гибридных и старт-стоп двигателях, в том числе:

• высокопрочные алюминиевые биметаллические материалы;

• прочные металлические покрытия для триметаллических подшипников;

• полимерные композитные покрытия, содержащие частицы твердых смазочных мате­риалов;

• бессвинцовые экологически чистые безвредные материалы.

Свойства подшипниковых материалов

Свойства материалов подшипников, характеризующие прочность и мягкость, сочетаются в различных пропорциях у разных материалов.

Отличные мягкие антифрикционные свойства триметалла ограничены толщиной покрытия (12 мкм). Если геометрический дефект или чужеродные частицы превышают толщину покрытия, ее антифрикционные свойства резко падают.

Мягкие свойства биметалла несколько ниже, чем у триметалла, однако они не ограничены толщиной покрытия, поэтому биметаллические подшипники способны прирабатываться к относительно крупным несоосностям и другим геометрическим дефектам. С другой стороны, усталостная прочность (максимальная нагрузка) биметаллических подшипников ниже (40–50 МПа), чем у триметаллических материалов (60–70 МПа). Также биметаллические подшипники без кремния хуже работают с чугунным валом.

Геометрические характеристики подшипников скольжения

Масляный зазор – это основной геометрический параметр подшипников скольжения. Он равняется разнице между внутренним диаметром подшипника и диаметром вала (внут­ренний диаметр подшипника измеряется под углом 90° к линии, разделяющей верхний и нижний вкладыши).

Величина масляного зазора – очень важный показатель. Большой зазор приводит к увеличению потока масла, что снижает его нагрев в подшипнике, однако вызывает неоднородное распределение нагрузки (она концентрируется на меньшей площади поверхности и увеличивает вероятность разрушения вследствие усталости). Также большой зазор производит значительную вибрацию и шум. А слишком маленький зазор вызывает перегрев масла и резкое падение его вязкости.

Типичные величины масляного зазора С: для пассажирских автомобилей Cмин = 0,0005D, Cмакс = 0,001D, для гоночных автомобилей Cмин = 0,00075D, Cмакс = 0,0015D (где D – диаметр вала).

Эксцентриситет является мерой, определяющей некруглость подшипника. Действительно, внутренняя поверхность подшипника не является абсолютно круглой. Она имеет форму, напоминающую лежащий на боку лимон. Это достигается за счет переменной толщины стенки подшипника, имеющей максимальное значение (Т) в центральной части и постепенно уменьшающейся в направлении стыка.

Принято измерять минимальное значение толщины (Te) на определенной высоте h для того, чтобы исключить зону выборки в области стыка. Разница между максимальным и минимальным значениями толщины называется эксцентриситетом: Т – Те.

Эксцентриситет, образованный переменной толщиной стенки вкладыша, добавляется к эксцентриситету, вызванному смещением вала относительно центра подшипника. Наличие эксцентриситета позволяет стабилизировать гидродинамический режим смазки за счет создания масляного клина с большим углом схождения. Рекомендуемые величины эксцентриситета: для пассажирских автомобилей 5–20 мкм, для гоночных автомобилей 15–30 мкм.

Посадочный натяг необходим для обеспечения надежной посадки подшипника в гнезде. Прочно посаженный подшипник имеет равномерный контакт с поверхностью гнезда – это предотвращает смещение подшипника во время работы, обеспечивает максимальный отвод тепла из области трения и увеличивает жесткость гнезда. Поэтому наружный диаметр подшипника и его периметр всегда больше диаметра гнезда и его периметра.

Поскольку прямое измерение наружного периметра подшипника – трудная задача, обычно измеряется другой параметр: высота выступа стыка (выступание). Высота выступа стыка равна разнице между наружным периметром половины подшипника и периметром половины гнезда.

Проверяемый вкладыш устанавливают в измерительный блок и прижимают с определенным усилием F, величина которого пропорциональна площади сечения стенки подшипника. Оптимальная величина высоты выступа стыка зависит от диаметра подшипника, жесткости и теплового расширения гнезда и температуры. Типичные значения высоты выступа стыка для подшипников диаметром 40–65 мм: для пассажирских автомобилей 25–50 мкм, для гоночных автомобилей 50–100 мкм.

Несмотря на самые совершенные конструкцию, материалы и технологии, в эксплуатации ДВС встречаются случаи износов и повреждений подшипников. Чтобы найти и устранить их причины, знание конструкции подшипников необходимо, но недостаточно. Об этом – в следующей статье.

Шатунные и коренные вкладыши — как определить износ

2513fcc77748c59d85d8a56c17901cd4_w650.jpg

Комментарии: 1 13.04.2021 Коленчатый вал силового агрегата в процессе работы попадает под влияние температурного и механического воздействия. Конструкция кривошипно-шатунного механизма поддерживается вкладышами. Последние выполняют роль подшипников скольжения. Изготовлены элементы из металла и выглядят в форме ровного геометрического полукольца. Так как на эту деталь приходится повышенная нагрузка, производитель защищает ее при помощи дополнительного слоя на поверхности — антифрикционного покрытия. Основные детали вращения в двигателе внутреннего сгорания закрепляются и работают при помощи этих элементов. Все они могут отличаться по конструкции и назначению. Коренные вкладыши находятся внутри моторного отсека. Главная задача этих элементов — фиксация коленвала и облегчение его работы. Изготовлены детали в форме полуколец, которые охватывают шейки коленчатого вала. Данный вид вкладышей можно назвать опорой коленвала внутри блока мотора. При износе элементов во время работы двигателя может появляться стук.

Шатунные элементы установлены в нижней головке шатунов для обеспечения их вращения. Для этих деталей вкладыши играют роль опоры. В этом же месте располагаются упорные кольца коленвала, которые не опускают осевого перемещения. Вкладыш такого типа изготовлен из многослойной структуры. В основе лежит пластина из стали с антифрикционным покрытием.

b0f71520407da08e708c3d66ac8ee4c9_w650.jpgОба вида вкладышей во время работы должны обильно смазываться, поэтому плотный контакт между трущимися поверхностями в рабочем состоянии должен отсутствовать. В элементах предусмотрены отверстия для масла и замки. Все вкладыши, использующиеся в автомобилестроении, можно поделить на 2 группы — биметаллические и триметаллические. В основе первых присутствует пластина из металла, толщина которой составляет 0.9 — 4 мм. На поверхности пластины есть антифрикционное покрытие. Защитный слой изготовлен из сплавов меди, свинца, олова и алюминия. При помощи такой защиты вкладыши могут функционировать даже с поверхностью, которая имеет геометрические дефекты. Триметаллические элементы имеют в конструкции третий слой толщиной 0.012 — 0.025 мм. Он включает в себя сплавы свинца, олова и меди. dec302f2034def0fa47603cc6c850fe7_w650.jpgИзнос вкладышей. Со временем подшипники скольжения начинают изнашиваться и требуют замены. Об этом может говорить потеря мощности мотора и стуки во время его работы. По одному звуку можно отличить изношенные шатунные и коренные вкладыши. Первые издают более резкий стук. Они могут хорошо прослушиваться на холостых оборотах во время резкого нажатия на педаль газа. Чтобы провести диагностику, можно отключать по очереди свечу у каждого цилиндра. Еще один признак износа после стука — резкое снижение давления масла. Нужно проявлять особую внимательность, так как это может быть единственной причиной. Дефекты на поверхности элементов могут говорить о том, что в систему попадает грязь. А мусор здесь является первой причиной преждевременного выхода из строя элементов. Если заклинит шейка коленчатого вала, автомобиль не сможет передвигаться. Как правило, возникает такая проблема из-за износа коренных элементов. Между ними и шейками образуется расстояние, что приводит к появлению стуков и другим шумам. Давление масла при таком явлении резко снижается. Итог. Шатунные и коренные вкладыши в автомобиле периодически выходят из строя. Об этом может говорить появление стука на холостых оборотах и падение давления масла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *