Что такое цифровая шина в автомобиле
Перейти к содержимому

Что такое цифровая шина в автомобиле

  • автор:

CAN шина в автомобиле: что это такое

CAN-шина – это электронное устройство, встроенное в электронную систему автомобиля для контроля технических характеристики и ездовых показателей. Она является обязательным элементом для оснащения автомобиля противоугонной системой, но это лишь малая часть её возможностей.

Что такое CAN шина

CAN-шина – это одно из устройств в электронной автоматике автомобиля, на которое возлагается задача по объединению различных датчиков и процессоров в общую синхронизированную систему. Она обеспечивает сбор и обмен данными, посредством чего в работу различных систем и узлов машины вносятся необходимые корректировки.

Аббревиатура CAN расшифровывается как Controller Area Network, то есть сеть контроллеров. Соответственно, CAN-шина – это устройство, принимающее информацию от устройств и передающее между ними. Данный стандарт был разработан и внедрён более 30 лет назад компанией Robert Bosch GmbH. Сейчас его используются в автомобилестроении, промышленной автоматизации и сфере проектирования объектов, обозначаемых «умными», например, домов.

Как работает CAN шина

Фактически, шина представляет собой компактное устройство со множеством входов для подключения кабелей или разъём, к которому подсоединяются кабели. Принцип её действия заключается в передаче сообщений между разными компонентами электронной системы.

Для передачи разной информации в сообщения включаются идентификаторы. Они уникальны и сообщают, например, что в конкретный момент времени автомобиль едет со скоростью 60 км/ч. Серия сообщения отправляется на все устройства, но благодаря индивидуальным идентификаторам они обрабатывают только те, которые предназначаются именно для них. Идентификаторы CAN-шины могут иметь длину от 11 до 29 бит.

can шина

В зависимости от назначения КАН шины разделяются на несколько категорий:

  • Силовые. Они предназначены для синхронизации и обмена данными между электронным блоком двигателя и антиблокировочной системой, коробкой передач, зажиганием, другими рабочими узлами автомобиля.
  • Комфорт. Эти шины обеспечивают совместную работу цифровых интерфейсов, которые не связаны с ходовыми блоками машины, а отвечают за комфорт. Это система подогрева сидений, климат-контроль, регулировка зеркал и т.п.
  • Информационно-командные. Эти модели разработаны для оперативного обмена информацией между узлами, отвечающими за обслуживание авто. Например, навигационной системой, смартфоном и ЭБУ.

Для чего CAN шина в автомобиле

Распространение интерфейса КАН в автомобильной сфере связано с тем, что он выполняет ряд важных функций:

  • упрощает алгоритм подсоединения и функционирования дополнительных систем и приборов;
  • снижает влияние внешних помех на работу электроники;
  • обеспечивает одновременное получение, анализ и передачу информации к устройствам;
  • ускоряет передачу сигналов к механизмам, ходовым узлам и иным устройствам;
  • уменьшает количество необходимых проводов;

В современном автомобиле цифровая шина обеспечивает работу следующих компонентов и систем:

  • центральный монтажный блок и замок зажигания;
  • антиблокировочная система;
  • двигатель и коробка переключения передач;
  • подушки безопасности;
  • рулевой механизм;
  • датчик поворота руля;
  • силовой агрегат;
  • электронные блоки для парковки и блокировки дверей;
  • датчик давления в колёсах;
  • блок управления стеклоочистителями;
  • топливный насос высокого давления;
  • звуковая система;
  • информационно-навигационные модули.

Этот не полный список, так как в него не включаются внешние совместимые приборы, которые тоже можно соединить с шиной. Часто таким образом подключается автомобильная сигнализация. CAN-шина также доступна для подключения внешних устройств для мониторинга рабочих показателей и диагностики на ПК. А при подключении автосигнализации вместе с маяком можно управлять отдельными системами извне, например, со смартфона.

Читайте также: Что такое центральный замок в автомобиле.

Плюсы и минусы CAN шины

Специалисты по автомобильной электронике, высказываясь в пользу использования CAN-интерфейса, отмечают следующие преимущества:

  • простой канал обмена данными;
  • скорость передачи информации;
  • широкая совместимость с рабочими и диагностическими приборами;
  • более простая схема установки автосигнализации;
  • многоуровневый мониторинг и контроль интерфейсов;
  • автоматическое распределение скорости передачи с приоритетом в пользу основных систем и узлов.

Но есть у CAN-шины и функциональные недостатки:

  • при повышенной информационной нагрузке на канал вырастает время отклика, что особенно характерно для работы автомобилей, «напичканных» электронными устройствами;
  • из-за использования протокола высшего уровня встречаются проблемы стандартизации.

Возможные проблемы с CAN шиной

По причине включения во многие функциональные процессы, неполадки в работе CAN-шины проявляются очень быстро. Среди признаков нарушений чаще всего проявляются:

  • индикация вопросительного знака на приборной панели;
  • одновременное свечение нескольких лампочек, например, CHECK ENGINE и ABS;
  • исчезновение показателей уровня топлива, оборотов двигателя, скорости на приборной панели.

Такие проблемы возникают по разным причинам, связанным с питанием или нарушением электроцепи. Это может быть замыкание на массу или аккумулятор, обрыв цепи, повреждение перемычек, падение напряжения из-за проблем с генератором или разряд АКБ.

Первая мера для проверки шины – компьютерная диагностика всех систем. Если она показывает шину, необходимо измерить напряжение на выводах H и L (должно быть ~4V) и изучить форму сигнала на осциллографе под зажиганием. Если сигнала нет или он соответствует напряжению сети, налицо замыкание или обрыв.

Ввиду сложности системы и большого количества подключений компьютерную диагностику и устранение неисправностей целесообразно передать в руки специалистов с высококачественным оборудованием.

Читайте также: Что такое адаптивный круиз контроль и для чего он нужен.

Что такое CAN шина?

Современные автомобили с электронными бортовыми системами состоят из огромного количества управляющих, исполнительных устройств и блоков управления, датчиков, контроллеров. Соответственно, наличие большого количества электронных систем предусматривает и наличие большого количества проводов. Кроме того, возникает необходимость применения коммуникационной системы, которая могла бы обеспечить обмен всеми данными между электронными устройствами и блоками управления. Данная задача была решена в 80-х годах, когда был разработан цифровой интерфейс CAN – Controller Area Network.

Применение can шины на автомобилях с электронной бортовой системой позволило:

  • объединить работу отдельных узлов и устройств;
  • применять большое количество различных блоков управления;
  • обеспечить быстрый обмен информацией между всеми устройствами;
  • создать эффективную защиту электронных систем от внешнего воздействия.

CAN шина представляет собой связующее звено в электронной системе современного автомобиля, служащее для обмена информацией. Это своего рода сетевой интерфейс, разработанный специально для обеспечения более эффективной и слаженной работы автоматических систем в автомобиле. Она позволяет подключать различные устройства, способные одновременно принимать и передавать цифровую информацию с очень высокой скоростью.

Применение can шины позволило значительно снизить влияние электромагнитных полей внешнего характера на работу электронных систем автомобиля.

Само устройство шины представляет собой витую пару проводов, по которым и обеспечивается передача данных. Длина проводов может быть различна, в зависимости от предполагаемой скорости передачи данных. Например, если скорость передачи данных составляет 1 Мбит/с, то длина проводов может достигать тридцати метров.

К can шине можно подключать большое количество устройств, число которых теоретически неограниченно, но по факту в среднем достигает в количестве чуть более шестидесяти. В настоящее время ведется разработка can шин, которые позволили бы подключать гораздо большее количество устройств и при этом обеспечивали бы максимально высокую скорость передачи данных.

Основные характеристики can шины:

  • скорость обмена информацией 1Мбит/c;
  • система обнаружения ошибок и неисправностей во время обмена информацией;
  • работа в режиме реального времени;
  • высокая устойчивость против возникновения помех.

Принцип работы can шины.

Can система обладает мультифункциональными возможностями. Все узлы системы могут передавать информацию одновременно и в то же время некоторые узлы могут осуществлять запрос шины. Специальный передатчик, анализируя поступающие данные, передает их на все узлы системы. Каждый из имеющихся узлов самостоятельно определяет необходимость обработки поступающей информации. Передатчик присваивает каждому потоку информации на отдельные узлы идентификатор, имеющий определенный приоритет. Именно на основе этого идентификатора узлы системы определяют важность поступающей информации.

Одна из главных особенностей can шины заключается в надежности передачи и обработки всей информации. Специальный can контролер регистрирует имеющиеся ошибки и неисправности. Происходит обработка ошибок и неисправностей, в результате которой узел, в котором обнаружена ошибка, будет отключен от общего соединения.

Конструктивные особенности can шины.

На сегодняшний день can шины реализуются на основе трех видов проводов:

  • витая пара проводов;
  • шлейф;
  • оптоволокно.

Первый и второй вид отличаются более низкой стоимостью, но и соответственно более низкой скоростью передачи данных. Оптоволокно обеспечивает максимально высокую скорость передачи данных. Шины с оптоволокном устанавливаются на автомобили представительского класса и класса люкс. Они отличаются большей надежностью и более длительным сроком службы. С другой стороны представляют собой и более сложную систему в области проведения ремонта или диагностики в отличие от шины из витых пар или в виде шлейфа. Если поврежденный, порвавшийся провод не составляет сложности спаять и устранить неполадки, то с оптоволокном дела обстоят сложнее, и не каждый специалист возьмет на себя такую ответственность.

Применение can шины позволило исключить необходимость использования большого количества проводов в электронной системе автомобиля для соединения блоков управления и узлов передачи данных. Современные автомобили становятся все более совершенными, количество блоков управления постоянно расширяется и в этом случае установка can шины становится уже крайней необходимостью. Даже самый простой автомобиль, на котором установлены стандартные автоматические системы, нуждается в централизованном обмене данными, не говоря уже об автомобилях класса люкс.

Диагностика can шины.

К главным преимуществам can шины необходимо отнести возможность проведения быстрой и достаточно простой диагностики всей системы автомобиля. Шина имеет единый разъем, который позволяет подключить устройства для диагностики.

Однако кроме проведения диагностики автомобиля, сама шина также может быть подвержена различным видам повреждений, которые требуют исправления.

Основными неисправностями шины являются разрыв проводов и помехи. В системе шины предусмотрена функция самодиагностики. Все неисправности, возникающие во время работы системы, записываются, соответственно каждая неисправность имеет свой собственный код. Это позволяет при подключении сканера легко устранить большую часть неполадок в шине, используя коды неисправностей.

В связи с тем, что can шины не универсальны, так как отсутствует единый стандарт их применения, для облегчения работы с ними разработаны специальные универсальные адаптеры. Адаптер для can шины облегчает подключение устройств для диагностики и осуществления других операций на различных моделях автомобилей.

Электронные шины в автомобиле

Бортовая электроника современного автомобиля в своем составе имеет большое количество исполнительных и управляющих устройств. К ним относятся всевозможные датчики, контроллеры и т.д.

Для обмена информацией между ними требовалась надежная коммуникационная сеть.

В середине 80-х годов прошлого столетия компанией BOSCH была предложена новая концепция сетевого интерфейса CAN (Controller Area Network).

CAN-шина обеспечивает подключение любых устройств, которые могут одновременно принимать и передавать цифровую информацию (дуплексная система). Собственно шина представляет собой витую пару. Данная реализация шины позволила снизить влияние внешних электромагнитных полей, возникающих при работе двигателя и других систем автомобиля. По такой шине обеспечивается достаточно высокая скорость передачи данных.

Как правило, провода CAN-шины оранжевого цвета, иногда они отличаются различными цветными полосами (CAN-High — черная, CAN-Low — оранжевокоричневая).

Благодаря применению данной системы из состава электрической схемы автомобиля высвободилось определенное количество проводников, которые обеспечивали связь, например, по протоколу KWP 2000 между контроллером ЭСУД и штатной сигнализацией, диагностическим оборудованием и т.д.

Скорость передачи данных по CAN-шине может достигать до 1 Мбит/с, при этом скорость передачи информации между блоками управления (двигатель — трансмиссия, ABS — система безопасности) составляет 500 кбит/с (быстрый канал), а скорость передачи информации системы «Комфорт» (блок управления подушками безопасности, блоками управления в дверях автомобиля и т.д.), информационно-командной системы составляет 100 кбит/с (медленный канал).

На рис. 1 показана топология и форма сигналов CAN-шины легкового автомобиля.

Топология и формы сигналов CAN-шины

Рис. 1. Топология и формы сигналов CAN-шины

При передаче информации какого-либо из блоков управления сигналы усиливаются приемо-передатчиком (трансивером) до необходимого уровня.

Каждый подключенный к CAN-шине блок имеет определенное входное сопротивление, в результате образуется общая нагрузка шины CAN. Общее сопротивление нагрузки зависит от числа подключенных к шине электронных блоков управления и исполнительных механизмов. Так, например, сопротивление блоков управления, подключенных к CAN-шине силового агрегата, в среднем составляет 68Ом, а системы «Комфорт» и информационно-командной системы — от 2,0 до 3,5 кОм.

Следует учесть, что при выключении питания происходит отключение нагрузочных сопротивлений модулей, подключенных к CAN-шине.

На рис. 2 показан фрагмент CAN-шины с распределением нагрузки в линиях CAN-High, CAN-Low.

Фрагмент CAN-шины с распределением нагрузки в проводах CAN-High, CAN-Low

Рис. 2. Фрагмент CAN-шины с распределением нагрузки в проводах CAN-High, CAN-Low

Системы и блоки управления автомобиля имеют не только различные нагрузочные сопротивления, но и скорости передачи данных, все это может препятствовать обработке разнотипных сигналов. Для решения данной технической проблемы используется преобразователь для связи между шинами.

Такой преобразователь принято называть межсетевым интерфейсом, это устройство в автомобиле чаще всего встроено в конструкцию блока управления, комбинацию приборов, а также может быть выполнено в виде отдельного блока.

Также интерфейс используется для ввода и вывода диагностической информации, запрос которой реализуется по проводу «К», подключенному к интерфейсу или к специальному диагностическому кабелю CAN-шины.

В данном случае большим плюсом в проведении диагностических работ является наличие единого унифицированного диагностического разъема (колодка OBD).

На рис. 3 показана блок-схема межсетевого интерфейса.

Блок-схема межсетевого интерфейса

Рис. 3. Блок-схема межсетевого интерфейса

Следует учесть, что на некоторых марках автомобилей, например, на Volkswagen Golf V, CAN-шина системы «Комфорт» и информационно-командная система не соединены межсетевым интерфейсом.

В таблице представлены электронные блоки и элементы, относящиеся к CAN-шинам силового агрегата, системы «Комфорт» и информационно-командной системы. Приведенные в таблице элементы и блоки по своему составу могут отличаться в зависимости от марки автомобиля.

Таблица. CAN-шины современного автомобиля

CAN-шина силового агрегата

Электронный блок управления двигателя

Электронный блок управления КПП

Блок управления подушками безопасности

Электронный блок управления АБС

Блок управления электроусилителя руля

Блок управления ТНВД

Центральный монтажный блок

Электронный замок зажигания

Датчик угла поворота рулевого колеса

CAN-шина системы «Комфорт»

Электронные блоки дверей

Электронный блок контроля парковочной системы

Блок управления системы «Комфорт»

Блок управления стеклоочистителей

Контроль давления в шинах

CAN-шина информационно-командной системы

Диагностика неисправностей CAN-шины производится с помощью специализированной диагностической аппаратуры (анализаторы CAN-шины) осциллографа (в том числе, со встроенным анализатором шины CHN) и цифрового мультиметра.

Как правило, работы по проверке работы CAN-шины начинают с измерения сопротивления между проводами шины. Необходимо иметь в виду, что CAN-шины системы «Комфорт» и информационно-командной системы, в отличие от шины силового агрегата, постоянно находятся под напряжением, поэтому для их проверки следует отключить одну из клемм аккумуляторной батареи.

Основные неисправности CAN-шины в основном связаны с замыканием/обрывом линий (или нагрузочных резисторов на них), снижением уровня сигналов на шине, нарушениями в логике ее работы. В последнем случае поиск дефекта может обеспечить только анализатор CAN-шины.

Развитие прогресса в автомобилестроении неуклонно ведет к повышению требований к управлению, возрастает объем функций, на совершенно новый уровень переходит информационная составляющая о работе и поведении автомобиля. В связи с этим бортовая электроника наращивает свое присутствие в современном автомобиле. По статистике, количество блоков управления в нем за последние 15 лет увеличилось более чем в пять раз, и эта тенденция сохраняется. Потребителю хочется иметь полный контроль над любимым авто и над дорогой. Последние модели могут обойтись в сложной ситуации без водителя и принять решение согласно заложенной программе. Такие вопросы, как парковка или проезд по размытому участку сельской дороги машина может решить самостоятельно, без участия человека. С каждым годом все реальнее и ближе введение элементов автопилотирования, применяемых в авиации.

Увеличившееся число электронных модулей вынудило, в свою очередь, находить и внедрять новые технологии передачи данных между отдельными блоками управления. В вычислительной технике они уже давно существовали, поэтому оставалось только перенести опыт их использования и стандартизировать применительно к автомобилю. Сначала произошло внедрение шины данных CAN. У ведущих проиводителей это случилось в середине 90-х годов. Однако пропускной способности и скорости этой технологии хватило примерно лет на 10, после чего встал вопрос о дальнейшем развитии системы передачи информации. Особенно заметными проблемы стали после повсеместного применения информационно-развлекательного контента. Вместе с ним пришли и технологии, применяемые в кабельном телевидении и в современных системах связи, включая диагностику и сервис.

В итоге к завоевавшей уважение и известной шине CAN на сегодня добавились:

— шина LIN (однопроводная шина);

— шина MOST (оптоволоконная шина) (рис. 4);

— беспроводная шина Bluetooth™.

Оптоволоконная шина MOST в современном автомобиле

Рис. 4. Оптоволоконная шина MOST в современном автомобиле

Рассмотрим алгоритм работы однопроводной шины LIN. Local Interconnect означает, что все блоки управления данной сети находятся в пределах одного условно ограниченного модуля (к примеру: багажника, крыши, мотора вентилятора и др.). Она может обозначаться еще и как «локальная подсистема». Обмен данными между отдельными системами шин LIN одного автомобиля осуществляется через соответствующий блок управления по шине данных CAN. Говоря о шине LIN, необходимо понимать, что речь идет об однопроводной шине. Площадь поперечного сечения провода составляет 0,35 мм 2 . Экранирование кабеля не является обязательным условием. Цвет изоляции может быть различным, в автомобилях «Ауди» он фиолетовый. Алгоритм работы шины LIN интуитивно понятен и от того прост для освоения. Он позволяет осуществлять обмен данными между одним блоком управления LIN, его называют Master, и подчиненными блоками Slave.

Блок управления LIN Master

Напомним, что блоки управления LIN Master сопряжены с шиной данных CAN и выполняют мастер-функции управления определенной шиной LIN.

Приведем основные функции блока LIN Master:

— контролирует передачу данных в шине LIN и скорость обмена;

— отправляет посылки-телеграммы в шину LIN. В его ПО заложен цикл, какому подчиненному блоку, когда, как часто и какие посылки-телеграммы отправлять;

— выполняет функцию сопряжения подчиненных блоков шины LIN с шиной данных CAN, так как является единственным блоком управления отдельной шины LIN, подключенным к шине данных CAN (рис. 5);

— обеспечивает процесс диагностики подключенных блоков управления LIN Slave (рис. 6).

Применение шины LIN в современном автомобиле

Рис. 5. Применение шины LIN в современном автомобиле

Блоки управления LIN Slave

Рис. 6. Блоки управления LIN Slave

Блоки управления LIN Slave

Подключенные или подчиненные блоки управления LIN Slave в рамках отдельной системы шины данных LIN выполняют функции контроля и управления работой отдельных устройств, например, мотора вентилятора, привода люка в крыше, а также датчиков и исполнительных механизмов (датчик уклона, ручного тормоза, сирена противоугонной сигнализации и т.д.). Датчики измеряют или контролируют какие-либо величины и передают сигнал в аналоговом виде. Блок управления LIN Slave анализирует и преобразовывает принятые параметры в цифровую форму. Затем эти величины передаются по шине LIN в виде цифрового сигнала. Блок управления LIN Master опрашивает исполнительные устройства (посылает телеграмму), получает информацию о состоянии, что позволяет провести сравнительный анализ между фактическим и расчетным состоянием и влиять на работу исполнительных механизмов через блоки управления LIN Slave. Каждый блок LIN Slave обладает электронными или электромеханическими функциями и имеет свой адрес. Адрес передается в заголовке посылки-телеграммы и его опознает блок, за которым закреплен этот адрес, иными словами происходит идентификация обращения.

Технически интерфейс LIN реализуется просто и надежно. Сопряжение блоков LIN Slave с управляющим блоком LIN (Master) осуществляется по однопроводной линии с помощью одноконтактного разъема, одного на всех. Рассмотрим алгоритм передачи данных.

Скорость шины LIN примерно в 5 раз меньше скорости шины CAN и составляет до 20 кбит/сек. Реализовано это для того, чтобы не перегружать шину CAN. Цифровые сигналы, как это давно уже принято в вычислительной и связной технике, передаются высоким и низким уровнями сигналов. Размах сигналов зависит от уровня напряжения питания. В автомобиле используется бортовое напряжение 12 В (14,4 В при работе генератора). Отсюда и уровни сигналов шин — от 0 до 12 В.

Если по шине LIN не происходит передача телеграмм или передается «рецессивный» бит, то уровень сигнала будет около 12 В, если будет передан «доминантный» бит, то передатчик замыкает шину на «массу» и уровень будет близок к нулю (рис. 7) Последовательность доминантных и рецессивных битов и составляет телеграмму, с помощью которой блок управления LIN Master обменивается с блоками LIN Slave. В различных модификациях приемопередатчиков (трансиверов) внешний вид рецессивных и доминантных уровней может иметь отличия.

Осциллограмма сигналов шины LIN

Рис. 7. Осциллограмма сигналов шины LIN

Чтобы устранить влияние различных факторов на качество работы шины LIN, при передаче возможны отклонения от заданных уровней (0 и 12 В) не более чем на 2 В (рис. 8).

Диапазон напряжений при передаче

Рис. 8. Диапазон напряжений при передаче

Уровень приема еще более защищен и сигналы принимаются амплитудой с отклонением до 40% от заданных (рис. 9).

Диапазон напряжений при приеме

Рис. 9. Диапазон напряжений при приеме

Опишем непосредственно «телеграммы», с помощью которых происходит общение блоков по шине LIN.

Блок управления LIN Master посылает телеграмму блоку LIN Slave и в заголовке передается код операции — что именно надо сделать. Например, необходимо переслать показания датчиков, измеряющих скорость вращения вентилятора, т.е. переслать информацию о величине скорости, которую данные датчики измеряют. Это первый вид телеграммы — опросный.

В ответ блок LIN Slave пересылает телеграмму с измеренными величинами. Это второй вид телеграммы — ответный.

Блок управления LIN Master анализирует показания датчиков, пересланные от блока LIN Slave, и посылает телеграмму с указаниями изменить скорость вращения. Это третий вид телеграммы — управляющий.

По такому алгоритму и происходит обмен между блоками, сопряженными шиной LIN.

Реализация этого алгоритма начинается с того, что блок LIN Master с определенным циклом обращается к блокам LIN Slave, посылая заголовок телеграммы (рис.10). Цикл обращения установлен программным обеспечением и может изменяться в зависимости от ситуации, режимов работы автомобиля и других факторов.

Осциллограмма заголовка телеграммы

Рис. 10. Осциллограмма заголовка телеграммы

Обращение относится ко всему возможному оборудованию, если каких-либо устройств нет на шине LIN, а это зависит от количества опций, которое оплачено владельцем, то обмен с отсутствующими блоками не состоится. Иными словами, на свой запрос к некоторым возможным блокам LIN Slave останется без ответа, ибо эти блоки просто отсутствуют в данной модификации. Это обстоятельство не влияет на работу. Если данные блоки будут поставлены, алгоритм работы с ними восстановится, напомним, что их может быть до 16-ти на каждый блок управления LIN Master.

Теперь подробнее о самой реализации взаимодействия.

Как было сказано ранее, блок управления LIN Master посылает с разной периодичностью, зашитой в программном обеспечении, опросные телеграммы.

Каждая телеграмма содержит заголовок (Header) и собственно текст, состоящий из переданных данных.

Заголовок состоит из четырех частей (рис. 10):

— пауза в синхронизации;

Опишем каждую из них.

Пауза в синхронизации (synch break)

Представляет собой не менее 13-ти битов, пересылаемых доминантным уровнем, что в вычислительной технике расценивается как передача не менее 13-ти «нулей». Блоки LIN Slave имеют возможность настроиться на прием телеграммы, ибо в тексте самой телеграммы не может быть подобной информации и столь долгая передача только доминантного уровня подсказывает блокам, что после этого поля последуют другие.

Окончание синхронизации (synch delimiter)

Эта часть передается рецессивным уровнем (около 12 В), что соответствует передаче «единицы» и сообщает блокам LIN Slave о том, что пауза закончилась и необходимо приготовиться к синхронизации.

Поле синхронизации (synch field)

Эта часть заголовка служит для непосредственной настройки блоков LIN Slave на работу с блоком управления LIN Master. Поле состоит из последовательности доминантных и рецессивных битов, то есть последовательности «нулей» и «единиц». Таким образом синхронизируется частота, на которой блоки LIN Slave должны работать по шине LIN, принять поле идентификатора и последующие за ним данные.

Это поле состоит из восьми бит. В первых 6-ти битах передаются адрес блока LIN Slave для его опознавания (идентификации) и количество полей для передачи данных, отведенных для ответа (от 0 до 8). Два оставшихся бита предназначены для передачи контрольной суммы. Контрольная сумма вычисляется согласно определенному алгоритму и необходима для того, чтобы избежать ошибок в передаче. При совпадении контрольной суммы оборудование считает, что информация передана корректно.

Получая информацию о количестве полей для передачи данных (Datafields), блок LIN Slave передает данные о состоянии сопряженных с ним датчиков, например, о скорости вращения вентилятора. Каждое поле — это 10 бит информации, из них первый бит — доминирующий стартовый, далее передается байт (8 бит) информации и заканчивается поле стоповым рецессивным битом (рис. 11). Стартовый и стоповый биты служат для синхронизации при передаче данных.

Осциллограмма ответа

Рис. 11. Осциллограмма ответа

В свою очередь, блок управления LIN Master принимает информацию, в нашем примере — это скорость вращения вентилятора. Если скорость вращения удовлетворяет ситуации и не требуется ее коррекция, то блок управления LIN Master через некоторое время (определяется ПО) снова пошлет запрос в виде телеграммы для контроля за работой данного блока LIN Slave.

Если необходимо изменить скорость вращения вентилятора, то блок управления LIN Master посылает телеграмму с нужной скоростью вращения, и блок LIN Slave, получив указание, изменяет скорость вентилятора (рис. 12).

Регулировка скорости вращения вентилятора

Рис. 12. Регулировка скорости вращения вентилятора

Напомним, что опрос блоков LIN Slave осуществляется с частотой, заложенной в программном обеспечении, но при изменении ситуации эта частота может меняться.

Факторов к изменению частоты обращения к блокам LIN Slave тем больше, чем лучше ПО и чем современнее бортовое оборудование автомобиля.

Комплектация современного автомобиля может быть разной, и если блок управления LIN Master, имеющий полное ПО, посылает запрос несуществующему блоку LIN Slave, то заголовки телеграмм возвращаются к LIN Master без ответа (рис. 13). Это не мешает алгоритму работу шины LIN и при установке соответствующего блока LIN Slave незамедлительно начинается его опрос и контроль работы со стороны блока управления LIN Master.

Осциллограммы с заголовками телеграмм без ответов

Рис. 13. Осциллограммы с заголовками телеграмм без ответов

Алгоритм работы шины LIN постоянно находится под контролем блока управления LIN Master и потому защищен от несанкционированного внешнего доступа (от блоков, размещенных за наружной обшивкой автомобиля), что и позволяет размещать блоки LIN Slave, которые работают только на выполнение команд от LIN Master и не требуют передачи данных на внешних деталях машины. Вмешательство извне затруднено, поэтому, к примеру, блок управления открытием гаражных ворот может располагаться в переднем бампере.

Диагностика шины LIN и всех блоков, сопряженных с этой линией, осуществляется через диагностический разъем. При тестировании происходит имитация обмена между блоками, анализируются ответы от блоков LIN Slave и задающие команды от LIN Master.

Can-шина

Can.pngТочки подключения.jpg

Электрические цепи автомобилей усложнялись и разрастались год от года. Первые автомобили обходились без генератора и аккумулятора – зажигание работало от магнето, а фары были ацетиленовые.
К середине 70-х годов в жгуты увязывались уже сотни метров электрических проводов, автомобили по оснащённости электрикой, соперничали с легкомоторной авиацией.

Идея упрощения электропроводки лежала на поверхности – хорошо бы проложить в автомобиле всего один провод, нанизать на него потребителей и возле каждого поставить некое управляющее устройство. Тогда по этому проводу можно было бы пустить и энергию для потребителей (лампочек, датчиков, исполнительных устройств) и управляющие сигналы.
К началу 90-х развитие цифровых технологий позволило приступить к осуществлению этой идеи — компаниями BOSCH и INTEL был разработан сетевой интерфейс CAN (Controller Area Network) для создания бортовых мультипроцессорных систем реального времени. В электронике проводную систему, по которой передаются данные, принято называть “шиной”.

Правила, по которым отдельные блоки обмениваются информацией, в электронике называются протоколом . Протокол позволяет посылать отдельным блокам отдельные команды, опрашивать каждый блок в отдельности или всех сразу. Кроме адресного обращения к устройствам, протокол предусматривает и возможность задания приоритетов самим командам. Например, команда на управление двигателем будет иметь приоритет перед командой на управление кондиционером.
Развитие и миниатюризация электроники позволяют теперь выпускать недорогие модули управления и связи, которые в автомобиле можно соединять в виде звезды, кольца или цепи.
Обмен информацией идет в обоих направлениях, т.е. можно не только включить например лампочку заднего хода, но и получить информацию светит ли она.

Получая информацию от различных устройств, система управления двигателем выберет оптимальный режим, система кондиционирования включит отопление или охлаждение, система управления стеклоочистителем взмахнет щетками и т.п.
Значительно упрощается и система диагностики двигателя и всего автомобиля в целом.

И хотя главная мечта электрика – всего два провода по всей машине – ещё не сбылась, CAN шина значительно упростила электропроводку автомобиля и повысила общую надежность всей системы.

Самое главное предназначение CAN-шины для автопроизводителей – снизить общий вес проводки в автомобиле. Например в BMW 7 серии 1993 года выпуска, общий вес проводов составляет около 200! кг. В том же автомобиле, но уже 2003 года выпуска, вес проводов составляет около 20кг. Снижение веса произошло в 10 раз, добавьте сюда удобство монтажа и корректную работы устройств, и мы получим идеальное решение.

Итак, CAN-шина — это система цифровой связи и управления электрическими устройствами автомобиля, позволяющая собирать данные от всех устройств, обмениваться информацией между ними, управлять ими. Информация о состоянии устройств и командные (управляющие) сигналы для них передаются в цифровой форме по специальному протоколу двумя проводами, т.н. «витая пара». Кроме того к каждому устройству подается и питание от бортовой электросети, но в отличии от обычной проводки – все потребители соединены параллельно, т.к. нет необходимости вести от каждого выключателя до каждой лампочки свой провод. Это значительно упрощает монтаж, снижает число проводов в жгутах и повышает надёжность всей электросистемы.

На сегодняшний день практически все современные автомобили оснащены так называемой цифровой проводкой – автомобильной CAN-шиной в которой сигналы передаются не в обычном аналоговом виде понятном любой сигнализации, а в виде кодированной цифровой посылки. Зачастую корректно установить на такой автомобиль обычную сигнализацию просто невозможно. Попытки совершить такие действия заканчиваются плачевно в первую очередь для автовладельца, автомобиль которого для установки аналоговой сигнализации подвергается прямо-таки варварскому вмешательству.
Пожалейте свой новый автомобиль, отнеситесь к нему и труду его создателей с уважением, подарите ему самое лучшее и современное, — автомобилю это понравится, а он в долгу не останется, годами надежной работы, принося Вам каждый день радость общения с ним.

Узнать, оборудован ли Ваш автомобиль Can-шиной, Вы можете в компании Pro Service по тел. 93-6666

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *