Как сделать индикатор заряда батареи
Перейти к содержимому

Как сделать индикатор заряда батареи

  • автор:

13 схем индикаторов разряда Li-ion аккумуляторов: от простых к сложным

Как узнать, когда сядет аккумулятор

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Далее будут представлены только те индикаторы разряда li-ion аккумуляторов, которые не только проверены временем и заслуживают вашего внимания, но и с легкостью собираются своими руками.

Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать контроллеры разряда.

Вариант №1

Индикатор разряда Li-ion на стабилитроне

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный — чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Индикатор заряда с двумя светодиодами (зеленый и красный)

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом — переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

Простейший индикатор разряда для литий-ионного аккумулятора

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Защита литиевой батареи от переразряда

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

Самый простой индикатор разряда для li-ion аккумулятора

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Контроль разряда батареек на полевых транзисторах

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше — тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

Схема индикатора разряда литиевого аккумулятора

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко — между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации — 3 мА, при выключенном светодиоде — 0.3 мА.

Чтобы не сел аккумулятор

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 — разрешено, 0 — запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Индикатор разряда АКБ и отключение нагрузки

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Источник образцового напряжения на TL431

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector’ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Монитор напряжения (супервизор)

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E/TT, CAT809TTBI-G;
  • на 2.93V: MCP102T-300E/TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
  • серия MN1380 (или 1381, 1382 — они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы — MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Схема детектора разряда аккумулятора на КР1171СП28

Также можно взять советский аналог — КР1171СПхх:

КР1171СП хх

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Микросхема монитора (детектора) напряжения

Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую «моргалку» на двух биполярных транзисторах.

Индикатор севшего аккумулятора 18650 с мигающим светодиодом

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Экономичный индикатор разряда литиевого аккумулятора на МАХ9030

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза — коротка вспышка — опять пауза). Это позволяет снизить потребляемый ток до смешных значений — в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом — всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы — инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

74HC04 в качестве индикатора разряда литий-ионного аккумулятора

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 — 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Светодиодный индикатор напряжения на литий-ионном аккумуляторе

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914:

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на «землю», можно перевести ее в режим «точка». В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения, т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

График (кривая) разряда литий-ионного аккумулятора

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Прецизионный индикатор на LM339

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339.

4 светодиода горят в зависимости от напряжения на батарейке

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Индикатор разряда АКБ на микроконтроллере ATMega

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке.

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Внимание. Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2.5В и ниже). Поэтому из всех имеющихся у вас плат необходимо отобрать только те экземпляры, которые срабатывают при правильном напряжении (3.0-3.2V).

Схема защиты Li-ion от переразряда/перезаряда

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 — это два миллиомных полевика, собранных в одном корпусе.

Как сделать индикатор разряда лития из платы защиты от мобильного телефона

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Как сделать индикатор разряда из платы защиты литий-ионного аккумулятора

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Пожалуйста, учитывайте тот факт, что схемы индикаторов разряда сами потребляют энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, предотвращающие глубокий разряд.

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот — в качестве индикатора заряда.

О реализации индикатора батареи в устройствах на МК

В портативном устройстве, работающем от аккумулятора, почти обязательным «удобством» является индикатор уровня его заряда. Казалось бы, если оно собрано на основе любого современного микроконтроллера и имеет графический дисплей, ничего сложного в этом нет: нужно лишь регулярно измерять напряжение батарейки с помощью встроенного АЦП и выводить его в виде традиционной батарейки��, степень заполнения которой зеленой краской зависит от напряжения. Но если так сделать в лоб, есть риск, что индикатор будет вести себя, как в известном перле «она металась, как стрелка осциллографа». В лучшем случае, он будет время от времени раздражающе подергиваться туда-сюда на один-два пикселя.

В статье описывается простая реализация индикатора разряда, лишенная этого недостатка.

Проблема «дергающейся батарейки»

Типичные разрядные характеристики литий-ионного аккумулятора при различных токах

Причин такой нестабильности показаний индикатора несколько. Для начала, нужно отметить, что напряжение почти полностью заряженного литий-ионного аккумулятора – 4,0 В, а почти полностью разряженного — 3,4-3,5 В. Соответственно, перепад от 0 до 100% соответствует всего 0,5-0,6 В, то есть индикация заряда с шагом 10% требует точности измерения напряжения не хуже 1%. При этом метрологические характеристики «вольтметра», встроенного в устройство, чаще всего достаточно скверные, потому что всерьез к проектированию этого узла относятся достаточно редко. Да и само напряжение, поступающее на устройство, потребление тока которым постоянно меняется в интервале от нескольких до 150-200 миллиампер, с учетом его подключения через невысокого качества китайский разъем типа JST – тоже непостоянно. При непостоянном токе потребления, зависимость разрядной характеристики аккумулятора от тока разряда – самое главное препятствие для точного определения заряженности по напряжению. Поэтому в смартфонах и ноутбуках для этого чаще применяют другой подход – специализированный контроллер подсчитывает кулоны, пошедшие на зарядку батареи и затраченные затем при разряде, а напряжение при этом играет вспомогательную роль.

Но мы не будем забираться в такие дебри. Способ этот дает прекрасные результаты, но он не так прост в реализации: такие контроллеры сложно достать в розницу, трудно паять вручную, и вдобавок их нужно прошивать на требуемые параметры аккумулятора с помощью платной программы и не менее платного программатора. Тем более, что простыми средствами тоже можно достичь неплохих результатов, пусть и не таких точных.

Решение

Черная линия – измеренное напряжение, красная – то, что мы будем использовать для определения уровня заряда.

Предлагаемая идея состоит в том, что раз потребление тока устройством меняется и наибольшая просадка напряжения происходит в моменты наибольшего потребления, нужно фиксировать напряжение именно в такие моменты. Это логично, так разряженный аккумулятор еще может долгое время «тянуть» устройство, пока оно находится в малопотребляющем режиме, но быстро просядет ниже минимально допустимого напряжения, когда потребление подскочит, например, при включении дисплея. При этом очевидно, что когда аккумулятор разряжается, степень его заряженности может только снижаться, но никак не увеличиваться. И наоборот, когда аккумулятор заряжается – степень его заряженности только возрастает, несмотря на то, что измеренное значение напряжения может в какие-то моменты падать из-за помех и т.п. Поэтому давайте будем во время разряда игнорировать поступающие данные об изменениях напряжения, если оно растет, считать этот рост артефактом. Делается это элементарно – путем сравнения каждого следующего значения измеренного напряжения с ранее зафиксированным минимальным, которое обновляется каждый раз, когда измеренное значение окажется ниже него. Во время заряда мы поступим аналогично, но фиксировать будем не минимумы, а максимумы.

Разумеется, нам здесь понадобится некий сигнал от зарядного устройства, информирующий о том, в каком состоянии (заряд или разряд) находится аккумулятор. Обычно контроллеры заряда литиевых аккумуляторов имеют выход на светодиод или пару светодиодов, который несложно завести на GPIO контроллера.

Тут нужно учесть еще и то, что кривые разряда и заряда существенно различаются. Поэтому по смене статуса зарядного контроллера нам нужно сменить не только направление работы индикатора, но и формулу расчета процентов заряженности от напряжения. А также то, что на протяжении этапа CV, на который приходится примерно 25-30% емкости батареи и половина времени заряда, индикатор будет показывать 100%, если мы будем принимать во внимание только напряжение. Можно так и оставить (сделав внятную индикацию, что зарядка еще не окончена), а можно заморочиться и вычислять на этом этапе проценты заряженности, как линейную (или более сложную) функцию от времени.

Код

Нижеприведенный код на Си реализует самый простой вариант описанного алгоритма. Здесь мы считаем, что полностью разряженная батарейка при разряде дает 3,4 В. Чем это обусловлено? Во-первых, тем, что примерно с этого напряжения начинается быстрый спад напряжения, и дальнейший разряд не дает существенно большего времени работы. Во-вторых, если питать МК от аккумулятора через LDO на 3,3 В, при снижении напряжения ниже этого значения начинает падать и напряжение питания МК. В некоторых случаях это не очень желательно, и в частности, в данной задаче пришлось бы задействовать встроенный источник опорного напряжения, чтобы измерить напряжение батареи в 3,3В и ниже. Та же полностью разряженная батарея при включении заряда сразу увеличивает напряжение до 3,65 В, я же взял 3,6 В, так как тогда при том же коэффициенте наклона автоматически выходит нужное напряжение на 100% заряженном аккумуляторе 4,2 В.

// Глобальные переменные и типы данных: // Состояние зарядного устройства typedef enum < NOCHG, CHG, CHGEND >tChgState; tChgState oldChargeStatus = NOCHG // Переменная для хранения предыдущего состояния // зарядного устройства между вызовами функции uint8_t minBatPercent = 100; // Минимальное и максимальное значения uint8_t maxBatPercent = 0; // уровня заряда батареи // Код следующих двух функций я не привожу, так как он привязан // к реализации конкретного устройства в железе. tChgState getChargeState(void) < // Здесь мы определяем состояние зарядного устройства . . . >uint16_t getBatVoltage() < // А здесь запрашиваем АЦП и вычисляем значение напряжения на батарее в милливольтах . . . >uint8_t batPercent(uint16_t voltage) < tChgState chargeStatus = getChargeState(); uint16_t emptyBatVoltage = 3400;// Напряжение, соответствующее полностью // разряженной батарее uint8_t slope = 6; // 6 мВ/% if(chargeStatus == CHG) // При заряде напряжение возрастает, учитываем это emptyBatVoltage = 3600; int8_t result = (voltage - emptyBatVoltage) / slope; if(result < 0) result = 0; // Уровень заряда не может оказаться меньше нуля if(result >100) result = 100; // и больше 100%. // Ищем минимум и максимум и сохраняем их в глобальных переменных для // использования при следующем вызове if(minBatPercent > result) minBatPercent = result; if(maxBatPercent < result) maxBatPercent = result; if(chargeStatus != oldChargeStatus) // При изменении состояния зарядного устройства < // начинаем заново с чистого листа. minBatPercent = result; maxBatPercent = result; >if(maxBatPercent - minBatPercent > 20) // Защита от особо сильных помех < minBatPercent = result; maxBatPercent = result; >oldChargeStatus = chargeStatus; // Перед окончанием сохраняем текущее состояние ЗУ // И, наконец, возвращаем максимальное значение, если идет заряд // или минимальное -- если идет разряд. if(chargeStatus == CHG) < return maxBatPercent; >else < return minBatPercent; >>

Далее мы в удобном месте вызываем функцию batPercent, скажем, раз в секунду, и то, что она вернула, передаем в код, рисующий батарейку.

Вот и все. Теперь никаких ненужных колебаний и шевелений, индикатор аккумулятора стоит, как вкопанный, не забывая, впрочем, убавляться по мере разряда. Данный способ, конечно, не претендует на точность измерения остатка заряда, но это обычно и не требуется. При необходимости, конечно, можно усложнить код, добавив в него учет температуры, использовав вместо линейной интерполяции более сложную и точную.

  • индикатор заряда
  • li-ion
  • аккумулятор

Схема индикатора заряда аккумулятора на светодиодах

индикатор зарядка АКБ

Успешный пуск автомобильного двигателя во многом зависит от состояния заряда аккумулятора. Регулярно проверять напряжение на клеммах с помощью мультиметра – неудобно. Гораздо практичнее воспользоваться цифровым или аналоговым индикатором, расположенным рядом с приборной панелью. Простейший индикатор заряда аккумулятора можно сделать своими руками, в котором пять светодиодов помогают отслеживать постепенный разряд либо заряд батареи.

Принципиальная схема

Рассматриваемая принципиальная схема индикатора уровня заряда представляет собой простейшее устройство, отображающее уровень заряда аккумулятора (АКБ) на 12 вольт. схема заряда акбЕё ключевым элементом является микросхема LM339, в корпусе которой собрано 4 однотипных операционных усилителя (компаратора). Общий вид LM339 и назначение выводов показан на рисунке. lm339Прямые и инверсные входы компараторов подключены через резистивные делители. В качестве нагрузки используются индикаторные светодиоды 5 мм.

Диод VD1 служит защитой микросхемы от случайной смены полярности. Стабилитрон VD2 задаёт опорное напряжение, которое является эталоном для будущих измерений. Резисторы R1-R4 ограничивают ток через светодиоды.

Принцип работы

Работает схема индикатора заряда аккумулятора на светодиодах следующим образом. Застабилизированное с помощью резистора R7 и стабилитрона VD2 напряжение 6,2 вольт поступает на резистивный делитель, собранный из R8-R12. Как видно из схемы между каждой парой этих резисторов формируются опорные напряжения разного уровня, которые поступают на прямые входы компараторов. В свою очередь, инверсные входы объединены между собой и через резисторы R5 и R6 подключены к клеммам аккумуляторной батарее (АКБ).

В процессе заряда (разряда) аккумулятора постепенно изменяется напряжение на инверсных входах, что приводит к поочередному переключению компараторов. Рассмотрим работу операционного усилителя OP1, который отвечает за индикацию максимального уровня заряда АКБ. Зададим условие, если заряженный аккумулятор имеет напряжение 13,5 В, то последний светодиод начинает гореть. Пороговое напряжение на его прямом входе, при котором засветится этот светодиод, рассчитаем по формуле:
UOP1+ = UСТ VD2 – UR8,
UСТ VD2 =UR8+ UR9+ UR10+ UR11+ UR12 = I*(R8+R9+R10+R11+R12)
I= UСТ VD2 /(R8+R9+R10+R11+R12) = 6,2/(5100+1000+1000+1000+10000) = 0,34 мА,
UR8 = I*R8=0,34 мА*5,1 кОм=1,7 В
UOP1+ = 6,2-1,7 = 4,5 В

Это означает, что при достижении на инверсном входе потенциала величиной более 4,5 вольт компаратор OP1 переключится и на его выходе появится низкий уровень напряжения, а светодиод засветится. По указанным формулам можно рассчитать потенциал на прямых входах каждого операционного усилителя. Потенциал на инверсных входах находят из равенства: UOP1- = I*R5 = UБАТ – I*R6.

Печатная плата и детали сборки

печатная плата

Печатная плата изготавливается из одностороннего фольгированного текстолита размером 40 на 37 мм, которую можно скачать здесь. Она предназначена для монтажа DIP элементов следующего типа:

  • резисторы МЛТ-0,125 Вт с точностью не менее 5% (ряд Е24)
    R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм,
    R5, R8 – 5,1 кОм,
    R6, R12 – 10 кОм;
  • диод VD1 любой маломощный с обратным напряжением не ниже 30 В, например, 1N4148;
  • стабилитрон VD2 маломощный с напряжением стабилизации 6,2 В. Например, КС162А, BZX55C6V2;
  • светодиоды LED1-LED5 – индикаторные типа АЛ307 любого цвета свечения.

Данную схему можно использовать не только для контроля напряжения на 12 вольтовых аккумуляторах. Пересчитав номиналы резисторов, расположенных во входных цепях, получаем светодиодный индикатор на любое желаемое напряжение. Для этого следует задаться пороговыми напряжениями, при которых будут включаться светодиоды, а затем воспользоваться формулами для пересчёта сопротивлений, приведенные выше.

Индикатор заряда батареи на Android можно изменить без Root

Индикатор заряда батареи на Андроид в статус-баре интерфейса операционной системы в большинстве случаев нейтральный, информативный и компактный.

Но есть устройства (нам встречались у Lenovo и Motorola), когда иконка:

  • • слишком длинная и выходит за габариты,
  • • либо на ней нельзя включить проценты,
  • • а если можно, то трудно их разглядеть.

В погоне за красотой разработчики могли перемудрить с дизайном, сильно размыть шрифт или сделать глючный фон. Владелец рутованного аппарата в Андроид может увеличить значок заряда батареи, изменить его, даже убрать полностью или изменить под свои пожелания. Может ли то же самое сделать тот, кто не использует Root? Может!

Индикатор заряда батареи на Андроид можно увеличить, изменить и убрать значок без Root

Как изменить индикатор батареи на Андроид, увеличить процент заряда, убрать значок без Root?

Недавно в Neovolt под руку попалось приложение Super Status Bar. Оно на русском языке, работает с Android 9.0 Pie и Android 10. Да, с MIUI тоже работает. Многие из вас наверняка с ним хорошо знакомы.

Но если не сталкивались, то вкратце — всё, что вам нужно сделать, это переключить несколько настроек (их результат мгновенный, не нужно ничего перепрошивать).

Индикатор заряда батареи на Андроид можно увеличить, изменить и убрать значок без Root

Упреждая стенания: «Смотрите, реклама, им заплатили тыщи долларов», размещаем две ссылки: официальную на Google Play и неофициальную тему на форуме 4PDA, где можно скачать полную версию бесплатно. Если приложение вам понравилось, то, конечно, разработчика нужно поддержать.

  • >Super Status Barв Google Play (бесплатно, много платных функций).
  • >Super Status Barсообщение на 4pda (неофициально, полная версия).

Помимо редактирования статус-бара, приложение способно на много других настроек интерфейса, жестов и так далее. Мы же сосредоточимся на иконке процента заряда батареи. Вот, что нужно сделать для её замены.

Индикатор заряда батареи на Андроид можно увеличить, изменить и убрать значок без Root

1. Откройте Super Status Bar

После установки приложения не требуются какие-либо специальные разрешения — их спросит система после запуска функций программы.

2. Нажмите кнопку «Старт»

Тем самым вы задействуете его возможности. Но потребуются как раз те самые разрешения доступа к функциям телефона.

3. В разделе «Разрешения» включите пункты:

  • «Изменять настройки» > «Включить»
  • «Служба специальных возможностей» > Super Status Bar > «Включено»

Индикатор заряда батареи на Андроид можно увеличить, изменить и убрать значок без Root

4. Выберите «Статус бар»

Раздел находится в главном меню приложения внизу в центре.

Индикатор заряда батареи на Андроид можно увеличить, изменить и убрать значок без Root

5. «Включить пользовательский статус-бар»

Переведите эту настройку в положение «Включить» и разрешите доступ к уведомлениям.

Теперь вы можете изменять статус-бар на своё усмотрение.

Индикатор заряда батареи на Андроид можно увеличить, изменить и убрать значок без Root

Как теперь изменить значок батареи на Андроид?

  1. 1. Измените «Стиль» отображения (Android 10, Android Pie, iOS, MIUI).
  2. 2. Удалите иконку в «Системные значки» > «Батарея».
  3. 3. В разделе «Порядок предметов» сместите иконки в центр, поменяйте местами или вовсе отключить элементы статус-бара.
  4. 4. Также можно настроить «Полоса батареи» — вдоль верхнего края экрана появляется полоса-индикатор заряда нужного цвета, полностью кастомизируемая.

В нашем случае на MIUI пришлось сделать несколько дополнительных настроек (закрепить приложение в памяти и разрешить фоновый процесс).

Напишите в комментарии, получилось у вас изменить внешний вид статус-бара и получить приемлемую иконку индикации заряда батареи? Если что-то не вышло, то напишите модель устройства и версию операционной системы. Также будем благодарны за примеры более лёгкого варианта такого приложения или альтернативы — присылайте их нам ВКонтакте @NeovoltRu.

Подпишитесь в группе на новости из мира гаджетов, узнайте об улучшении их автономности и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.

  • Кто изобрёл литий-ионный аккумулятор? Узнайте, кто создал Li-ion на самом деле Sep 15, 2023
  • Батареи LMFP: технология аккумуляторов LiFePO4 следующего поколения Sep 11, 2023
  • 15 трендов аккумуляторов 2023: LiFePO4, топливные элементы и твердотельные аккумуляторы Oct 19, 2022
  • Аккумуляторы 2023: квантовое стекло от создателя Li-ion, жидкий металл и ультраконденсаторы Oct 18, 2022
  • Российские аккумуляторы: как России извлечь выгоду из литий-ионной аккумуляторной лихорадки? Oct 14, 2022

14 Comments

У меня сомостгятельно отключается сам телефон 0отя зарядки в полное достаточно в чем это дело не пойму раньше такого не было все это начало происходить внезапно отключается когда показывает 61 процент заряжки 40 процентов 30 процентов 50 процентов 20 процентов зарядки аккумулятора заряда батареи помогите разобраться в чем это дело и что нужно мне зделать для этого

May 11, 2020
Роман Neovolt.ru
Здравствуйте Скорее всего аккумулятор изношен, меняйте.
May 12, 2020
У меня устройство Xiaomi redmi 8. Я не знаю что такое ADB. У меня не получается(. Помогите чуваки
Dec 17, 2020
Роман Neovolt.ru
Здравствуйте ADB — это программа для прошивки. Что именно хотите сделать?
Dec 19, 2020
Самсунг а 51 можно пожалуйста полную инструкцию к устройству, по смене значка
Feb 18, 2021

Оно меня уже бесит, оно работает через жопу извините за выражение, я даже в настройках включил перекрывать оригинальный статус бар этим, на экране блокировки он тупо исчезает, то есть он пропадает и появляется оригинальный статус бар, так что делайте выводы сами.

Nov 29, 2021

Всё это здорово, но я так и не понял, могу ли я УВЕЛИЧИТЬ значок батареи? Цвет, дизайн и прибамбасы мне побоку, надо увеличить раза в 3,а то без очков совершенно неразборчиво. Techno spark 7,андроид 11

Nov 30, 2021
Роман Neovolt.ru
Здравствуйте Попробуйте приложения из статьи.
Dec 5, 2021

Я так и не поняла можно ли увеличить процент зарядки просто мне надо будет ехать на неделю и я бы хотела сделать 1000% зарядки). А так классно спасибо

Jul 13, 2022
Алексей Neovolt.ru

Здравствуйте. Перезарядить не получится — технология на это не способна. Купите большой повербанк (например, на 20000 мАч), чтобы подзаряжать гаджеты, когда нет доступа к розетке.

Jul 19, 2022
Не нашла марки oddo
Feb 19, 2023
Алексей Neovolt.ru
Здравствуйте. Что Вас интересует? Напишите пожалуйста подробнее Ваш вопрос.
Feb 27, 2023
В моем телефоне пропало табло разрядки батареи при работе.вчем дело
Feb 21, 2023
Алексей Neovolt.ru

Здравствуйте! Спасибо, что обратились к нам. Может быть несколько причин, по которым статистика разряда батареи не отображается на вашем телефоне.Во-первых, это может быть связано с проблемой программного обеспечения. Вы недавно обновляли операционную систему телефона или устанавливали новые приложения? Если да, то возможно, что обновление или приложение вызывает конфликт с функцией статистики разряда батареи.Другой причиной может быть проблема калибровки аккумулятора. Со временем способность батареи удерживать заряд может измениться, что может повлиять на точность статистики разряда батареи. В этом случае может потребоваться повторная калибровка батареи.Наконец, это может быть аппаратная проблема, например, неисправный аккумулятор или поврежденный разъем аккумулятора. Если ни одно из программных или калибровочных исправлений не помогло, лучше отнести телефон к специалисту для диагностики и устранения аппаратных проблем.Надеюсь, это поможет! Дайте мне знать, если у вас возникнут дополнительные вопросы или проблемы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *