Что такое нормальное детонационное и калильное сгорание
Перейти к содержимому

Что такое нормальное детонационное и калильное сгорание

  • автор:

3.Детонационное сгорание рабочей смеси

Появление детонации происходит по следующей схеме. При распространении фронта пламени несгоревшая рабочая смесь подвергается сжатию: сгоревшие газы позади фронта пламени действуют на нее подобно поршню. Если при этом давление и температура превысят критические для данного топлива величины, создаются условия для самовоспламенения, которое называют детонационным. Его характерный признак — взрывная скорость распространения пламени. Принято считать, что это явление связано с образованием перекисей в каких-то участках камеры сгорания под действием высокого давления и температуры. Данный химический процесс требует определенного времени, поэтому, как правило, он происходит в зонах, наиболее удаленных от свечи и дольше всего подвергающихся действию сильного давления. Способствует этому, и прогрев рабочей смеси горячими стенками камеры, что сильнее всего сказывается в узких щелях. Понятно также, что детонация тем вероятнее, чем выше степень сжатия. Когда часть заряда детонирует, образуются ударные волны, которые распространяются со скоростью до 1000 м/с и «бьют» в стенки камеры сгорания. Напрямую разрушить их они не могут, но передают часть своей кинетической энергии, вызывая местные перегревы и вибрацию. Если детонационное сгорание происходит достаточно долго, обгорают или разрушаются металлические детали, чаще всего поршень, свеча или клапан.

Детонация наиболее вероятна, когда двигатель работает с полностью открытой дроссельной заслонкой, а частота вращения коленчатого вала мала. В этом случае наполнение цилиндров свежей смесью максимальное, остаточных газов мало, а время, в течение которого отдаленные от свечи части заряда подвергаются воздействию давления и температуры, наиболее велико и достаточно для образования перекисей. Наглядное проявление этого положения знакомо каждому водителю. Если во время разгона с малой начальной скорости при полностью открытой дроссельной заслонке отчетливо слышны звонкие детонационные стуки, то это лишь вначале, а при достижении определенной скорости они пропадают. Или наоборот, когда автомобиль движется на подъем с замедлением (дроссельная заслонка опять-таки полностью открыта), то вначале детонации нет, а при падении скорости до какой-то величины она может появиться. В подобных случаях для прекращения стуков достаточно прикрыть дроссель (уменьшить наполнение цилиндров) или перейти на пониженную передачу (ускорить вращение коленчатого вала).

Характерными внешними признаками детонации являются повышенное дымление двигателя — черный дым из выхлопной трубы и падение его мощности из-за того, что горение протекает не лучшим образом.

4.Факторы, влияющие на детонацию

Степень сжатия. При увеличении степени сжатия температура и давление в конце процесса сжатия возрастают, что способствует возникновению детонации. Поэтому пределом увеличения степени сжатия является такое ее значение, при котором возникает детонационное сгорание. При прочих равных условиях возможное повышение степени сжатия зависит от октанового числа топлива и применяемой формы камеры сгорания. Поэтому степень сжатия для данного двигателя выбирают с учетом предназначаемого для него топлива и типа камеры сгорания.

Влияние формы камеры сгорания и размещения свечи зажигания. Форма камеры сгорания и расположение в ней свечи зажигания существенно влияют на продолжительность процесса сгорания. Наиболее удачной является такая форма камеры сгорания, в которой расстояние от свечи зажигания до наиболее удаленной точки будет наименьшим.

При расположении свечи зажигания в центре камеры сгорания создаются наилучшие условия для сгорания рабочей смеси, так как фронт пламени от свечи может распространяться равномерно во все стороны. Процесс сгорания в случае применения клиновидной и полуклиновой камер сгорания с клапанами, расположенными под углом, и смещенной относительно центра свечей зажигания улучшается вследствие наличия небольшого зазора между днищем поршня и головкой цилиндров (вытеснителя) в наиболее удаленной от свечи зажигания части камеры, где происходит сгорание последней порции рабочей смеси. Такое устройство камеры сгорания обеспечивает возможность бездетонационного сгорания последней порции рабочей смеси, увеличивает объем смеси, находящейся вблизи источника зажигания, и создает дополнительное вихревое движение заряда.

Размер и число цилиндров. При больших диаметрах цилиндра путь пламени до наиболее удаленной точки камеры сгорания увеличивается, что способствует возникновению детонации. В этом случае для получения бездетонационного сгорания устанавливают две свечи зажигания, располагая их в диаметрально противоположных концах.

В многоцилиндровых двигателях с внешним смесеобразованием возможно возникновение детонации в отдельных цилиндрах из-за неравномерного распределения смеси по цилиндрам. Склонность к детонации появляется в тех цилиндрах, в которые поступает обогащенная горючая смесь (а = 0,8 — 0,9).

Материал головки цилиндров и поршня. Склонность двигателя к детонации можно уменьшить, улучшив отвод теплоты от деталей, образующих камеру сгорания. С этой целью для изготовления головки цилиндров и поршня следует применять материал, обладающий большой теплопроводностью. Использование алюминиевого сплава, имеющего по сравнению с чугуном большую теплопроводность, позволяет при том же топливе несколько-повысить допустимую степень сжатия.

Состав рабочей смеси. Наибольшую склонность к детонации имеет рабочая смесь при коэффициенте избытка воздуха а = 0,8 — 0,9, так как при этом скорость сгорания, температура, и давление оказываются наибольшими, что способствует возникновению детонации.

Число оборотов коленчатого вала. При увеличении числа оборотов уменьшается время для химической подготовки топлива. Кроме того, из-за повышения сопротивления во впускной системе коэффициент остаточных газов возрастает. В результате этого температура и давление в процессе сгорания уменьшаются. Совместное действие этих факторов приводит к тому, что с увеличением числа оборотов склонность двигателя к детонации снижается.

Нагрузка двигателя. При уменьшении нагрузки и соответствующем прикрытии дроссельной заслонки увеличивается коэффициент остаточных газов, а давление и температура конца сжатия снижаются. Оба эти фактора уменьшают склонность двигателя к детонации.

Угол опережения зажигания. При увеличении угла опережения зажигания процесс сгорания развивается ближе к в. м. т., повышая давление и температуру во второй фазе процесса сгорания, что способствует возникновению детонации.

Нагарообразование. При отложении нагара на днище поршня и поверхности головки цилиндров, обращенной к камере сгорания, отвод теплоты от них уменьшается и температура поверхности, ограничивающей камеру сгорания, повышается. Кроме того, по мере отложения нагара несколько увеличивается степень сжатия.

Охлаждение двигателя. Часть теплоты отработавших газов через стенки отводится в охлаждающую среду. При уменьшении отвода теплоты возникает перегрев внутренних поверхностей цилиндра, поршня и головки цилиндров, что приводит к возникновению детонационного сгорания.

Влияние скорости вихревого движения рабочей смеси. Увеличение скорости вихревого движения рабочей смеси способствует ускорению развития фронта пламени и резкому уменьшению общей продолжительности сгорания вследствие сокращения его второй фазы. Опыты показали, что скорость распространения пламени в карбюраторных двигателях при вихревом движении рабочей смеси составляет 15—60 м/сек, т. е. в 8—12 раз больше, чем, когда оно отсутствует.

Вихревое движение рабочей смеси в цилиндре возникает в процессе впуска свежего заряда. Для увеличения скорости вихревого движения рабочей смеси в период сгорания, когда поршень приближается к в. м. т., применяют камеры сгорания с вытеснителем. В такой камере сгорания при приближении поршня к в. м. т. в зоне, противоположной размещению свечи зажигания, образуется небольшой (около 1 мм) зазор между поршнем и головкой цилиндров, из которого заряд вытесняется в направлении к свече зажигания; при этом происходит усиление вихревого движения. При наличии вытеснителя, в котором сгорает последняя порция топлива, уменьшается возможность возникновения детонационного сгорания.

Сорт топлива. Характеризуется октановым числом, который оценивает антидетонационную стойкость бензина. Чем выше октановое число, тем выше антидетонационные свойства топлива. Октановое число легких фракций бензина меньше, чем у средних и тяжелых фракций. При быстром открытии дроссельной заслонки (например, при интенсивном разгоне) тяжелые фракции поступают в цилиндр с некоторой задержкой, что приводит к детонации в начале разгона из-за временного снижения октанового числа топлива, поступившего в цилиндр.

Температура и давление воздуха на впуске в цилиндр. Увеличение температуры и давления окружающей среды усиливает вероятность детонации. Поэтому применение наддува в двигателях с принудительным воспламенением затруднительно.

Что такое нормальное детонационное и калильное сгорание

Различают нормальное и детонационное горение топлива. При нормальном сгорании рабочей смеси, ее части воспламеняются постепенно и сгорание происходит полное. Скорость распространения пламени при таком сгорании составляет 25 … м/сек, и скорость распространения пламени можно регулировать обеднением или обогащением рабочей смеси.
При нормальном горении в цилиндре давление нарастает плавно, но в результате повышения температуры и давления может начаться детонационное горение или взрывное. При этом скорость горения нарастает скачкообразно и достигает 1500 … 2500 м/сек. В результате возникающий вибрации появляется характерный металлический стук.
В результате взрывного горения часть топлива не успевает полностью сгореть, что внешне сопровождается появлением дымного выхлопа. Взрывное горение приводит к перегреву деталей двигателя, при этом двигатель работает неуравновешенно, из-за перегрева прогорают поршни и клапаны, пригорают поршневые кольца, резко повышается износ цилиндропоршневой и кривошипно-шатунной групп.

19.04.2011 Продаем скипидар Нижний Новгород

19.04.2011 Продаем растворители Нижний Новгород

4.1 Нормальное и детонационное сгорание

Повышение мощности и экономичности бензиновых двигателей возможно прежде всего за счет увеличения степени сжатия. Эта тенденция позволяет в наиболее полной степени совершенствовать конструкции двигателей. В то же время она предъявляет более жесткие требования к детонационной стойкости бензинов: чем выше детонационная стойкость, тем экономичнее и эффективнее работа двигателя.

При сгорании топлива в двигателе происходит превращение его химической энергии в тепловую и далее в механическую. Характер протекания процесса сгорания обусловливает как мощность и экономические показатели двигателя, так и его надежность и долговечность.

Вид сгорания в двигателе можно разделить на нормальное и аномальное.

При нормальном рабочем процессе в двигателе с искровым зажиганием сгорание смеси можно условно разделить на три фазы (рис. 8): 1 — начальную, в течение которой небольшой очаг горения, возникающий между электродами свечи, постепенно превращается в развитый фронт турбулентного пламени; // — основную фазу распространения пламени; /// — фазы догорания смеси.

Рис. 8. Индикаторная диаграмма процесса сгорания в двигателе с зажиганием от искры

I, II, III — продолжительность соответственно начальной, основной и завершающей фаз горения в градусах поворота коленчатого вала (°ПКВ); Θ — угол опережения зажигания

Провести резкую грань между отдельными фазами сгорания не представляется возможным, так как изменение характера процесса происходит постепенно.

Первая фаза — период скрытого сгорания или период задержания воспламенения (12-15% от общего времени сгорания топлива) характеризуется более интенсивной подготовкой рабочей смеси к сгоранию, чем в период сжатия. В этой фазе сгорания интенсифицируются окислительные процессы (прежде всего за счет подогрева смеси от электрической искры происходит низкотемпературное горение топлива), а повышение давления практически не отличается от повышения давления, вызываемого сжатием без горения.

Вторая фаза — непосредственное сгорание (сопровождается более быстрым, чем при чистом сжатии, повышением давления) продолжается до максимального подъема давления и обычно заканчивается спустя несколько градусов после верхней мертвой точки (в.м.т.). Сгорание происходит интенсивнее при более высокой температуре рабочей смеси к моменту подачи искры. Скорость сгорания подчиняется закону действующих масс:

где ν — скорость реакции; С1, С2, С3 — концентрация действующих веществ; k — постоянная, зависящая от природы реагирующих веществ.

Так как скорость сгорания пропорциональна произведению концентраций реагирующих веществ, то по мере сгорания, когда их концентрация снижается, скорость сгорания уменьшается.

Химический состав и количество топлива, его соотношение с воздухом, величина остаточных газов в цилиндре, температура и давление смеси, конструкция камеры сгорания и ряд других факторов существенно влияют на скорость сгорания. Наиболее интенсивно процесс сгорания протекает при α=0,95, что характерно для небольшого обогащения горючей смеси. Дальнейшее обогащение топлива приводит к увеличению неполноты его сгорания, а обеднение — к расходу тепла на нагревание избыточного азота. В обоих случаях снижается скорость сгорания. При повышении степени сжатия двигателя процесс сгорания интенсифицируется (повышаются температура и давление смеси).

Нормальное течение процесса иллюстрирует схема сгорания рабочей смеси и распространения фронта пламени, показанная на рис. 9. Видно, что скорость сгорания примерно постоянна весь период, давление в цилиндре двигателя от расширяющихся продуктов сгорания возрастает плавно и достигает максимального значения вблизи в.м.т., поршень движется вниз (к н.м.т.), и занимаемый продуктами сгорания объем увеличивается. Все это характеризует нормальную работу двигателя.

Рис. 9. Схема распространения фронта пламени по камере сгорания: А — искра

При нормальном сгорании процесс проходит плавно с почти полным протеканием реакций окисления топлива и средней скоростью распространения пламени 10-60 м/с.

Основными нарушениями нормального сгорания в двигателе с воспламенением от искры являются: детонация, преждевременное и последующее воспламенение (калильное зажигание), воспламенение от сжатия при выключенном зажигании.

Детонация возникает при самовоспламенении части топливовоздушной смеси, до которой пламя от свечи доходит в последнюю очередь. Внешне детонация проявляется в возникновении звонких металлических стуков при работе двигателя на больших нагрузках. Скорость распространения пламени резко возрастает (почти в 100 раз) и достигает 1500-2500 м/с, возникает детонационное сгорание, характеризующееся неравномерным протеканием процесса, скачкообразным изменением скорости движения пламени и возникновением ударной волны (рис.10).

При этом реакции окисления проходят не полностью и в отработавших газах обнаруживаются продукты неполного сгорания топлива. Детонация приводит к потере мощности двигателя из-за неполноты сгорания и увеличения теплоотдачи стенкам цилиндра.

Рис. 10. Физическая картина детонационного горения в двигателе: а-а — положение фронта пламени; А — очаг самовоспламенения (детонации); Д1-ДЗ — мгновенные положения распространения зоны горения от очага А; 01-04 — ударные волны; 01′-04′ — отраженные волны

При этом резко повышается температура головок цилиндра и охлаждающей жидкости, а в отработавших газах появляется дымление. Длительная работа с детонацией приводит к перегреву двигателя, вследствие чего может возникнуть преждевременное самовоспламенение рабочей смеси, а также механические повреждения отдельных деталей двигателя (рис. 11).

Рис. 11. Поршень, разрушенный детонацией

Прогар поршней и клапанов, пригорание поршневых колец, нарушение изоляции свечей, растрескивание вкладышей шатунных подшипников — все это может быть вызвано детонацией. Согласно перекисной теории (она в настоящее время общепризнанна), при детонации образуются первичные продукты окисления топлива — органические перекиси.

При присоединении молекулы кислорода к углеводородам по С-С связи образуется перекись (R-O-O-R), по С-Н связи — гидроперекись (R-O-O-H).

Перекиси, образующиеся в процессе предварительного окисления, накапливаясь в несгоревшей части рабочей смеси, распадаются (по достижении критической концентрации) со взрывом и выделением большого количества тепла. Тем самым активизируется вся смесь. Такой момент будет сопровождаться взрывным сгоранием смеси, т.е. детонацией. На рис. 12 представлена индикаторная диаграмма, снятая при работе двигателя с детонацией.

Рис. 12. Индикаторная диаграмма основных видов сгорания в карбюраторном двигателе: а — нормальное сгорание; б, в — калильное зажигание; г — детонационное сгорание; Р — давление; γ угол поворота коленчатого вала

Для возникновения детонационной волны (детонационного очага) наиболее благоприятное место — часть бензиновоздушной смеси, которая находится в удаленных частях камеры сгорания. От очага детонации горение быстро распространяется, по всей части топливно-воздушной смеси и охватывает ее. Механизм распространения волны сгорания от детонационного очага отличен от механизма нормального горения. Фронт пламени в детонационной волне распространяется не путем теплопередачи, а за счет практически мгновенного выделения большого количества химической энергии в малом объеме. Это вызывает резкое местное повышение давления, в результате чего образуется ударная волна. Последняя, проходя со скоростью до 2500 м/с по оставшейся несгоревшей части смеси, вызывает ее сжатие, нагрев и воспламенение. Детонационная волна многократно отражается от стенок цилиндра, при этом возникает характерный металлический стук.

Различают следующие группы факторов, влияющих на возникновение и интенсивность детонации: зависящие от конструкции двигателя, эксплуатационные и связанные со свойствами топлива.

Конструктивными факторами, влияющими на процесс горения, являются степень сжатия, форма и размеры камеры сгорания, количество и расположение свечей, диаметр цилиндра, ход поршня, материал головки блока цилиндра двигателя.

Эксплуатационными факторами, влияющими на возникновение детонации, являются коэффициент избытка воздуха, число оборотов двигателя, угол опережения зажигания, температура охлаждающей жидкости, влажность воздуха, слой нагара в камере сгорания и др.

Фактором, связанным со свойствами топлива, является его детонационная стойкость. Причем при испарении топлива в процессе смесеобразования (вследствие различной детонационной стойкости отдельных фракций) детонация также может усилиться. Детонационная стойкость бензинов зависит от его углеводородного состава. Ароматические углеводороды обладают наибольшей детонационной стойкостью, меньшей детонационной стойкостью обладают изопарафиновые и олефиновые и самой низкой — парафиновые углеводороды.

Когда детонирует около 5% смеси, появляются внешние признаки детонации. Если детонирует 10-12% смеси, наблюдается детонация средней интенсивности. Очень сильная детонация характерна для 18-20% детонирующей смеси. Детонационное сгорание топлива отличается характерным резким металлическим стуком в цилиндрах, перегревом головок цилиндров и падением его мощности, периодически появляющимся черным дымом отработавших газов. Детонация приводит к прогоранию поршней, выпускных клапанов, к перегреву двигателя.

Одним из распространенных видов аномального сгорания является калильное зажигание.

Под калильным зажиганием понимают неуправляемое воспламенение рабочей смеси от раскаленного тела: тлеющего нагара или перегретых деталей.

Особенность зажигания тлеющим нагаром — его взаимосвязь с детонацией: при возникновении детонационных волн нагар со стенок камеры сгорания частично удаляется, устраняя тем самым калильное зажигание, так как исчезают «горячие точки» — причина самопроизвольного воспламенения рабочей смеси. Так как скорость сгорания смеси при этом увеличивается, детонация прекращается, однако после выброса частиц нагара она возобновляется вновь.

При калильном зажигании перегретыми деталями (центральные электроды, «юбочки» изоляторов свечей, реже выпускные клапаны) воспламенение не прекращается по мере его выгорания, а прогрессивно самоусиливается.

Для оценки склонности свечи к перегреву пользуются показателем, называемым калильным числом (КЧ). Его величину для данного двигателя подбирают так, чтобы, с одной стороны, исключить возможность калильного зажигания натеплонапряжен-ных режимах (в этом случае необходимо низкое КЧ), а с другой стороны, обеспечить на минимальных режимах температуру края «юбочки» и центрального изолятора не ниже 397°С во избежание их закоксовывания (для этого необходимо достаточно высокое КЧ). Активность нагара с точки зрения калильного зажигания зависит от содержания в бензинах ароматических углеводородов и зольных присадок. Так как высокомолекулярные ароматические углеводороды образуют активный нагар, склонный к саморазогреванию (присутствие в нагаре продуктов сгорания тетраэтилсвинца (ТЭС) снижает температуру воспламенения нагаров с 550-600 до 200-300 °С), особенно трудно удовлетворить этим требованиям в теплонапряженных двигателях, работающих на топливах с высокими детонационными свойствами.

С калильным зажиганием борются, улучшая конструкцию камер сгорания и изменяя свойства образующегося нагара путем введения в топливо специальных присадок.

Детонационное сгорание в бензиновом двигателе

Поршень

Автор: Юлиюс Мацкерле (Julius Mackerle)
Источник: «Современный экономичный автомобиль» [1]

Количество просмотров7120 Количество комментариев0

Увеличение степени сжатия бензиновых двигателей ограничено в связи с возможностью возникновения детонации. При этом явлении возникает неконтролируемое сгорание смеси уже после ее воспламенения искрой. Детонационное сгорание протекает с очень высокой скоростью и создает в цилиндре повышенные давление и температуру. Если этот процесс продолжается некоторое время, то двигатель повреждается.

Максимальная степень сжатия, применяемая в бензиновых двигателях, определяется видом и свойствами используемого топлива. Способность топлива противостоять детонации выражается его октановым числом, которое показывает, сколько частей изооктана в смеси с нормальным гептаном нужно иметь в эталонном топливе, чтобы в специальном двигателе CFR оно имело такую же способность противостоять детонации, как и испытываемое топливо. Степень сжатия двигателя CFR может быть изменена без его останова. Условия в этом специальном двигателе не соответствуют условиям в реальном автомобильном двигателе, поэтому два вида топлива в двигателе CFR с одинаковым октановым числом в каждом конкретном автомобильном двигателе ведут себя по-разному. Это зависит от химического состава топлива, формы камеры сгорания и от типа охлаждения двигателя.

Следует отметить, что производство топлива с высоким октановым числом дорого и из одной тонны нефти получить его можно меньше, чем топлива с низким октановым числом. Октановое число можно повысить с помощью антидетонационных присадок, которые, однако, содержат вредные вещества (свинец и т. п.). В данной статье будут рассмотрены возможности специальных изменений конструкции или регулировок двигателя в целях обеспечения возможности использовать в нем топлива с низким октановым числом.

Прежде всего, необходимо объяснить, как возникает в двигателе детонация. После зажигания искрой свечи рабочей смеси в камере сгорания процесс сгорания развивается со скоростью, зависящей от температуры и давления рабочей смеси, типа топлива, состава смеси (соотношения между топливом и воздухом). Большое влияние на процесс сгорания оказывают также движение смеси перед ее зажиганием и температура стенок камеры сгорания и цилиндра.

Часть смеси, сгорающая первой в камере сгорания вблизи свечи, расширяется при повышенной температуре и сжимает остаток еще не сгоревшей смеси. По этой причине температура и давление несгоревшей смеси постоянно увеличиваются, и сама эта смесь оттесняется в места камеру сгорания, отдаленные от свечи. Если давление и температура в оставшейся несгоревшей смеси достигнут критических значений, то произойдет мгновенное воспламенение всей массы этой смеси, что вызовет резкий скачок температуры и давления. Такой тип сгорания называется детонационным и оно проявляется в виде характерного постукивания. Если это явление продолжается некоторое время, то происходит перегрев камеры сгорания и от ее горячих стенок свежая смесь самопроизвольно воспламеняется раньше, чем в свече зажигания возникает искра.

Это самопроизвольное воспламенение (называемое также калильным зажиганием) характерно тем, что может происходить как при включенном, так и при выключенном зажигании. Мощность двигателя в этих условиях быстро падает, а максимальная температура и давление при сгорании резко возрастают. У одноцилиндровых двигателей калильное зажигание проявляется через резкую остановку работы двигателя – как при его заклинивании. У многоцилиндровых двигателей такое преждевременное воспламенение, как правило, не происходит одновременно во всех цилиндрах, поэтому двигатель не останавливается, однако быстро теряет мощность. Причиной калильного зажигания могут являться также перегретые контакты свечи зажигания.

Условием, устраняющим детонацию, является обеспечение минимальной удаленности всех точек поверхности камеры сгорания смеси от свечи зажигания. Кроме того, необходимо учесть температуру стенок камеры сгорания. Объем смеси, сгорающий последним, должен располагаться в холодной части камеры сгорания; в первую очередь должна сгореть смесь, находящаяся в зоне с самой высокой температурой стенок, вблизи выпускного клапана.

Поскольку сгорание вблизи ВМТ протекает весьма быстро, рабочая смесь в зоне свечи сгорит первой и будет долго находиться в соприкосновении со стенками камеры сгорания. Тепловые потери в стенку малы в том случае, когда местная температура стенок достаточно высока (например, тарелка выпускного клапана). Зона вокруг впускного клапана имеет самую низкую температуру, и сюда должен оттесняться остаток несгоревшей смеси. Положение свечи зажигания обычно обусловлено общей концепцией двигателя. Тем не менее, свеча должна располагаться как можно ближе к выпускному клапану, быть легко доступной и хорошо охлаждаться.

Опасность возникновения детонации можно устранить несколькими способами. Запаздывание зажигания сокращает время сгорания перед ВМТ поршня, и последние порции рабочей смеси догорают уже за ВМТ на такте расширения. Разогревание этих порций будет проходить медленно и детонация не возникнет. Однако при таком запаздывании зажигания уже будет невозможно достичь максимальной мощности двигателя и высокой топливной экономичности.

Влияние опережения зажигания и октанового числа топлива на мощность двигателя показано на рис. 1 и в табл. 1 ниже.

Влияние угла опережения зажигания и октанового числа топлива на мощность двигателя
Рис. 1
Влияние угла опережения зажигания θз и октанового числа топлива на мощность двигателя Ne

Экспериментальный двигатель со степенью сжатия ε = 7,25 достигает полной мощности при опережении зажигания в 23° и на границе детонации требует топлива с октановым числом 98. Из рис. 1 и табл. 1 видно, что при использовании топлива с октановым числом 93 необходимо уменьшить опережение зажигания до 11°. При этом мощность двигателя упадет до 95 %. Требования к октановому числу при этом опережении уменьшаются.

Табл. 1 Влияние октанового числа и опережения зажигания на мощность двигателя на границе детонации

Точки на рис. 1 Октановое число Мощность, %
1 98 100
2 96 99
3 93 95
4 90 90
5 86 85

Эти особенности можно использовать для снижения удельного расхода топлива при частичной нагрузке двигателя. Степень сжатия у двигателя необходимо увеличить так, чтобы при частичной нагрузке удельный расход топлива уменьшился и увеличилась мощность. Однако при полностью открытой дроссельной заслонке двигатель будет работать с детонацией. Устранить это можно уменьшением опережения зажигания, например, с помощью вакуумного регулятора. Хотя при этом не будет достигнута максимальная мощность двигателя, но при его частичной нагрузке расход топлива уменьшится. При современном уровне развития электроники обеспечение автоматического регулирования опережения зажигания на основе постоянного слежения за параметрами процесса сгорания в двигателе уже не представляет больших трудностей и способствует снижению расхода топлива при работе двигателя с частичной загрузкой.

Последнее обновление 02.03.2012
Опубликовано 13.05.2011

Читайте также

Поршень

Двухтактный двигатель внутреннего сгорания Двухтактный двигатель как альтернатива четырёхтактному, его преимущества и недостатки.

Биодизель

Биодизель Биодизель является возобновляемым топливом, и чтобы сделать еще, можно просто вырастить больше урожая.

Сноски

  1. ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. — М.: Машиностроение, 1987. — 320 с.: ил.//Стр. 110 — 114 (книга есть в библиотеке сайта). – Прим. icarbio.ru

Комментарии

Все материалы, представленные на данном сайте, защищены законодательством в области авторского права. Смотрите публикация Ваших материалов, условия перепечатки материалов, соблюдение авторских прав.
Дизайн и поддержка – Владимир Егоров, icarbio.ru 2023 ©.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *